cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A362302 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/3)} (-k/6)^j * binomial(n-2*j,j)/(n-2*j)!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, -1, -3, 1, 1, 1, 1, -2, -7, -9, 1, 1, 1, 1, -3, -11, -19, -9, 1, 1, 1, 1, -4, -15, -29, 1, 36, 1, 1, 1, 1, -5, -19, -39, 31, 211, 225, 1, 1, 1, 1, -6, -23, -49, 81, 526, 1009, 477, 1, 1, 1, 1, -7, -27, -59, 151, 981, 2353, 953, -819, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,   1,   1,   1,   1, ...
  1,  1,   1,   1,   1,   1,   1, ...
  1,  1,   1,   1,   1,   1,   1, ...
  1,  0,  -1,  -2,  -3,  -4,  -5, ...
  1, -3,  -7, -11, -15, -19, -23, ...
  1, -9, -19, -29, -39, -49, -59, ...
  1, -9,   1,  31,  81, 151, 241, ...
		

Crossrefs

Columns k=0..2 give A000012, A351929, A362309.
Main diagonal gives A362303.
T(n,2*n) gives A362304.
T(n,6*n) gives A362305.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n\3, (-k/6)^j/(j!*(n-3*j)!));

Formula

E.g.f. of column k: exp(x - k*x^3/6).
T(n,k) = T(n-1,k) - k * binomial(n-1,2) * T(n-3,k) for n > 2.
T(n,k) = n! * Sum_{j=0..floor(n/3)} (-k/6)^j / (j! * (n-3*j)!).

A362341 a(n) = n! * Sum_{k=0..floor(n/3)} (-k/6)^k / (k! * (n-3*k)!).

Original entry on oeis.org

1, 1, 1, 0, -3, -9, 21, 246, 1065, -4283, -67319, -397484, 2315941, 45914155, 343743037, -2623221054, -62980998639, -571382718039, 5391435590545, 152175023203432, 1622112809355661, -18232162910685569, -591788241447761819, -7247966654986009490
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x)/(1+lambertw(x^3/6))))

Formula

E.g.f.: exp(x) / (1 + LambertW(x^3/6)).

A362345 a(n) = n! * Sum_{k=0..floor(n/4)} (-n/24)^k /(k! * (n-4*k)!).

Original entry on oeis.org

1, 1, 1, 1, -3, -24, -89, -244, 1681, 24382, 155401, 695146, -7490339, -157336464, -1421454033, -8817579224, 129268310081, 3555528110716, 41578411339441, 329824291072252, -6116622750516899, -207991913454970784, -2985298421745508329
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((6*lambertw(x^4/6))^(1/4))/(1+lambertw(x^4/6))))

Formula

a(n) = n! * [x^n] exp(x - n*x^4/24).
E.g.f.: exp( ( 6*LambertW(x^4/6) )^(1/4) ) / (1 + LambertW(x^4/6)).

A362346 a(n) = n! * Sum_{k=0..floor(n/5)} (-n/120)^k /(k! * (n-5*k)!).

Original entry on oeis.org

1, 1, 1, 1, 1, -4, -35, -146, -447, -1133, 10081, 162625, 1188001, 6073354, 24692669, -340585244, -8007557375, -83565282891, -598436312543, -3348919070207, 62583951520321, 1933207863670000, 26224985071994941, 241528060568764586, 1721188205642283841
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((24*lambertw(x^5/24))^(1/5))/(1+lambertw(x^5/24))))

Formula

a(n) = n! * [x^n] exp(x - n*x^5/120).
E.g.f.: exp( ( 24*LambertW(x^5/24) )^(1/5) ) / (1 + LambertW(x^5/24)).
Showing 1-4 of 4 results.