A362333 Least nonnegative integer k such that (gpf(n)!)^k is divisible by n, where gpf(n) is the greatest prime factor of n.
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
For n = 12, gpf(n)! = 3! = 6 is not divisible by 12, but (3!)^2 = 36 is divisible by 12, so a(12) = 2.
Programs
-
Python
from sympy import factorint def A362333(n): f = factorint(n) gpf = max(f,default=None) a = 0 for p in f: m = gpf v = 0 while m >= p: m //= p v += m a = max(a,-(-f[p]//v)) return a
Comments