A371151 Numbers k >= 2 such that A362333(k)-A371148(k)/A371149(k) sets a new maximum.
2, 80, 224, 5632, 26624, 1114112, 2490368, 24117248
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Table begins: n\k| 1 2 3 4 5 6 7 8 9 10 ---+------------------------------------------------------------- 1 | 2 3 5 6 7 10 11 13 14 15 2 | 4 9 12 18 25 36 45 49 50 75 3 | 8 24 27 54 72 108 125 135 216 250 4 | 16 48 81 144 162 324 405 432 625 648 5 | 32 96 243 288 486 864 972 1215 1944 2430 6 | 64 192 576 729 1458 1728 2916 3645 5184 5832 7 | 128 384 1152 2187 3456 4374 8748 10368 10935 17496 8 | 256 768 2304 6561 6912 13122 20736 26244 32805 52488 9 | 512 1536 4608 13824 19683 39366 41472 78732 98415 124416 10 | 1024 3072 9216 27648 59049 82944 118098 236196 248832 295245
For n = 80 = 2^4 * 3^0 * 5^1, gpf(80)! = 5! = 2^3 * 3^1 * 5^1. The ratios of the prime exponents are 4/3, 0/1, and 1/1, the greatest of which is 4/3, so a(80) = 4.
from sympy import factorint,Rational def A371148(n): f = factorint(n) gpf = max(f,default=None) a = 0 for p in f: m = gpf v = 0 while m >= p: m //= p v += m a = max(a,Rational(f[p],v)) return a.p
For n = 80 = 2^4 * 3^0 * 5^1, gpf(80)! = 5! = 2^3 * 3^1 * 5^1. The ratios of the prime exponents are 4/3, 0/1, and 1/1, the greatest of which is 4/3, so a(80) = 3.
from sympy import factorint, Rational def A371149(n): f = factorint(n) gpf = max(f, default=None) a = 0 for p in f: m = gpf v = 0 while m >= p: m //= p v += m a = max(a, Rational(f[p], v)) return a.q
Comments