cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A080085 Number of factors of 2 in the factorial of the n-th prime, counted with multiplicity.

Original entry on oeis.org

1, 1, 3, 4, 8, 10, 15, 16, 19, 25, 26, 34, 38, 39, 42, 49, 54, 56, 64, 67, 70, 74, 79, 85, 94, 97, 98, 102, 104, 109, 120, 128, 134, 135, 145, 146, 152, 159, 162, 168, 174, 176, 184, 190, 193, 194, 206, 216, 222, 224, 228, 232, 236, 244, 255, 259, 265, 266, 273, 277
Offset: 1

Views

Author

Paul D. Hanna, Jan 26 2003

Keywords

Comments

n-th prime minus number of 1's in binary representation of n-th prime. [Juri-Stepan Gerasimov, May 17 2010]

Crossrefs

Cf. A276133 (first differences).
Column 1 of array A379008, incremented by one.

Programs

Formula

a(n) = Sum_{k=1..L} floor( p_n /2^k ), where L = log(p_n)/log(2), where p_n is the n-th prime.
a(n) = A000040(n) - A014499(n). - Juri-Stepan Gerasimov, May 17 2010
a(n) = 1+A294898(A000040(n)). - Antti Karttunen, Dec 14 2024

A362333 Least nonnegative integer k such that (gpf(n)!)^k is divisible by n, where gpf(n) is the greatest prime factor of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Pontus von Brömssen, Apr 16 2023

Keywords

Comments

First differs from A088388 at n = 40.

Examples

			For n = 12, gpf(n)! = 3! = 6 is not divisible by 12, but (3!)^2 = 36 is divisible by 12, so a(12) = 2.
		

Crossrefs

Programs

  • Python
    from sympy import factorint
    def A362333(n):
        f = factorint(n)
        gpf = max(f,default=None)
        a = 0
        for p in f:
            m = gpf
            v = 0
            while m >= p:
                m //= p
                v += m
            a = max(a,-(-f[p]//v))
        return a

Formula

a(n) > 1 if and only if n is in A057109.
a(n) <= A051903(n).
a(n) = ceiling(A371148(n)/A371149(n)). - Pontus von Brömssen, Mar 16 2024

A371148 Let n = Product_{j=1..k} p_j^e_j and gpf(n)! = Product_{j=1..k} p_j^f_j, where p_j = A000040(j) is the j-th prime and p_k = gpf(n) = A006530(n) is the greatest prime factor of n. a(n) is the numerator of the maximum of e_j/f_j.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Pontus von Brömssen, Mar 13 2024

Keywords

Examples

			For n = 80 = 2^4 * 3^0 * 5^1, gpf(80)! = 5! = 2^3 * 3^1 * 5^1. The ratios of the prime exponents are 4/3, 0/1, and 1/1, the greatest of which is 4/3, so a(80) = 4.
		

Crossrefs

Cf. A000040, A006530, A362333, A371149 (denominators), A371150, A371151.

Programs

  • Python
    from sympy import factorint,Rational
    def A371148(n):
        f = factorint(n)
        gpf = max(f,default=None)
        a = 0
        for p in f:
            m = gpf
            v = 0
            while m >= p:
                m //= p
                v += m
            a = max(a,Rational(f[p],v))
        return a.p

Formula

A362333(n) = ceiling(a(n)/A371149(n)).

A371149 Let n = Product_{j=1..k} p_j^e_j and gpf(n)! = Product_{j=1..k} p_j^f_j, where p_j = A000040(j) is the j-th prime and p_k = gpf(n) = A006530(n) is the greatest prime factor of n. a(n) is the denominator of the maximum of e_j/f_j.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Pontus von Brömssen, Mar 13 2024

Keywords

Examples

			For n = 80 = 2^4 * 3^0 * 5^1, gpf(80)! = 5! = 2^3 * 3^1 * 5^1. The ratios of the prime exponents are 4/3, 0/1, and 1/1, the greatest of which is 4/3, so a(80) = 3.
		

Crossrefs

Cf. A000040, A006530, A362333, A371148 (numerators), A371150, A371151.

Programs

  • Python
    from sympy import factorint, Rational
    def A371149(n):
        f = factorint(n)
        gpf = max(f, default=None)
        a = 0
        for p in f:
            m = gpf
            v = 0
            while m >= p:
                m //= p
                v += m
            a = max(a, Rational(f[p], v))
        return a.q

Formula

A362333(n) = ceiling(A371148(n)/a(n)).
Showing 1-4 of 4 results.