cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A371151 Numbers k >= 2 such that A362333(k)-A371148(k)/A371149(k) sets a new maximum.

Original entry on oeis.org

2, 80, 224, 5632, 26624, 1114112, 2490368, 24117248
Offset: 1

Views

Author

Pontus von Brömssen, Mar 13 2024

Keywords

Comments

The corresponding maxima are: 0, 2/3, 3/4, 7/8, 9/10, 14/15, 15/16, 18/19, ... .
All terms after a(1) = 2 are in A371150.
Apparently, a(n) = 2^(A080085(n+1)+1)*prime(n+1) for n >= 2, with corresponding maxima 1 - 1/A080085(n+1).

Crossrefs

A371150 Numbers k such that A371149(k) > 1.

Original entry on oeis.org

80, 160, 189, 224, 240, 378, 448, 480, 640, 672, 756, 896, 945, 1120, 1280, 1344, 1375, 1512, 1625, 1701, 1890, 1920, 2016, 2240, 2673, 2688, 2750, 3024, 3200, 3250, 3360, 3402, 3584, 3780, 3840, 4032, 4125, 4480, 4875, 5120, 5346, 5500, 5632, 5760, 5831, 6048
Offset: 1

Views

Author

Pontus von Brömssen, Mar 13 2024

Keywords

Crossrefs

A362333 Least nonnegative integer k such that (gpf(n)!)^k is divisible by n, where gpf(n) is the greatest prime factor of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Pontus von Brömssen, Apr 16 2023

Keywords

Comments

First differs from A088388 at n = 40.

Examples

			For n = 12, gpf(n)! = 3! = 6 is not divisible by 12, but (3!)^2 = 36 is divisible by 12, so a(12) = 2.
		

Crossrefs

Programs

  • Python
    from sympy import factorint
    def A362333(n):
        f = factorint(n)
        gpf = max(f,default=None)
        a = 0
        for p in f:
            m = gpf
            v = 0
            while m >= p:
                m //= p
                v += m
            a = max(a,-(-f[p]//v))
        return a

Formula

a(n) > 1 if and only if n is in A057109.
a(n) <= A051903(n).
a(n) = ceiling(A371148(n)/A371149(n)). - Pontus von Brömssen, Mar 16 2024

A371148 Let n = Product_{j=1..k} p_j^e_j and gpf(n)! = Product_{j=1..k} p_j^f_j, where p_j = A000040(j) is the j-th prime and p_k = gpf(n) = A006530(n) is the greatest prime factor of n. a(n) is the numerator of the maximum of e_j/f_j.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Pontus von Brömssen, Mar 13 2024

Keywords

Examples

			For n = 80 = 2^4 * 3^0 * 5^1, gpf(80)! = 5! = 2^3 * 3^1 * 5^1. The ratios of the prime exponents are 4/3, 0/1, and 1/1, the greatest of which is 4/3, so a(80) = 4.
		

Crossrefs

Cf. A000040, A006530, A362333, A371149 (denominators), A371150, A371151.

Programs

  • Python
    from sympy import factorint,Rational
    def A371148(n):
        f = factorint(n)
        gpf = max(f,default=None)
        a = 0
        for p in f:
            m = gpf
            v = 0
            while m >= p:
                m //= p
                v += m
            a = max(a,Rational(f[p],v))
        return a.p

Formula

A362333(n) = ceiling(a(n)/A371149(n)).
Showing 1-4 of 4 results.