cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A362394 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (-k/2)^j * (j+1)^(n-j-1) / (j! * (n-2*j)!).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -5, 1, 1, 1, -2, -11, -14, 1, 1, 1, -3, -17, -11, 56, 1, 1, 1, -4, -23, 10, 381, 736, 1, 1, 1, -5, -29, 49, 976, 2461, 1114, 1, 1, 1, -6, -35, 106, 1841, 3736, -21083, -45156, 1, 1, 1, -7, -41, 181, 2976, 3121, -106910, -449623, -428660, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2023

Keywords

Examples

			Square array begins:
  1,   1,    1,    1,    1,    1,     1, ...
  1,   1,    1,    1,    1,    1,     1, ...
  1,   0,   -1,   -2,   -3,   -4,    -5, ...
  1,  -5,  -11,  -17,  -23,  -29,   -35, ...
  1, -14,  -11,   10,   49,  106,   181, ...
  1,  56,  381,  976, 1841, 2976,  4381, ...
  1, 736, 2461, 3736, 3121, -824, -9539, ...
		

Crossrefs

Columns k=0..3 give A000012, A362395, A362396, A362397.

Programs

  • PARI
    T(n, k) = n! * sum(j=0, n\2, (-k/2)^j*(j+1)^(n-j-1)/(j!*(n-2*j)!));

Formula

E.g.f. A_k(x) of column k satisfies A_k(x) = exp(x - k*x^2/2 * A_k(x)).
A_k(x) = exp(x - LambertW(k*x^2/2 * exp(x))).
A_k(x) = 2 * LambertW(k*x^2/2 * exp(x))/(k*x^2) for k > 0.

A362430 E.g.f. satisfies A(x) = exp(x - x^3 * A(x)).

Original entry on oeis.org

1, 1, 1, -5, -47, -239, 121, 19321, 261409, 1449505, -20428559, -730564559, -10403326559, -10910781023, 3713153976169, 108037345645321, 1301173754543041, -22441761904964159, -1628466860540690207, -41339196023230498463, -189173461196772118079
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(x^3*exp(x)))))

Formula

E.g.f.: exp(x - LambertW(x^3 * exp(x))) = LambertW(x^3 * exp(x))/x^3.
a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * (k+1)^(n-2*k-1) / (k! * (n-3*k)!).

A362431 E.g.f. satisfies A(x) = exp(x - x^4 * A(x)).

Original entry on oeis.org

1, 1, 1, 1, -23, -239, -1439, -6719, 33601, 1536193, 24171841, 268424641, 1144566721, -47515765439, -1727426116415, -36344982098879, -481057514071679, 1197767242412161, 319851095455612801, 12145632936380316289, 293167011107091899521, 3520557699737168603521
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(x^4*exp(x)))))

Formula

E.g.f.: exp(x - LambertW(x^4 * exp(x))) = LambertW(x^4 * exp(x))/x^4.
a(n) = n! * Sum_{k=0..floor(n/4)} (-1)^k * (k+1)^(n-3*k-1) / (k! * (n-4*k)!).
Showing 1-3 of 3 results.