cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A362472 E.g.f. satisfies A(x) = exp(x + x^3 * A(x)^3).

Original entry on oeis.org

1, 1, 1, 7, 97, 961, 10201, 177241, 3801505, 80718625, 1887205681, 52896262321, 1648697978401, 54216677033377, 1928791931034697, 75326014326206281, 3159713152034201281, 140373558362282197441, 6632746205445950124385, 333591744669464008432225
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2023

Keywords

Crossrefs

Column k=6 of A362490.

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-3*x^3*exp(3*x))/3)))

Formula

E.g.f.: exp(x - LambertW(-3*x^3 * exp(3*x))/3) = ( -LambertW(-3*x^3 * exp(3*x))/(3*x^3) )^(1/3).
a(n) = n! * Sum_{k=0..floor(n/3)} (3*k+1)^(n-2*k-1) / (k! * (n-3*k)!).

A362480 E.g.f. satisfies A(x) = exp(x - x^2 * A(x)^2).

Original entry on oeis.org

1, 1, -1, -17, -47, 961, 14191, -35825, -4258463, -46744703, 1252890271, 49630926511, 61171154353, -41944148256191, -1033550755723121, 24977027757497551, 2117415434541888961, 20487158235798909697, -3240242006475108681665, -146763820123398901335185
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(2*x^2*exp(2*x))/2)))

Formula

E.g.f.: exp(x - LambertW(2*x^2 * exp(2*x))/2) = sqrt( LambertW(2*x^2 * exp(2*x))/(2*x^2) ).
a(n) = n! * Sum_{k=0..floor(n/2)} (-1)^k * (2*k+1)^(n-k-1) / (k! * (n-2*k)!).

A362482 E.g.f. satisfies A(x) = exp(x - x^4 * A(x)^4).

Original entry on oeis.org

1, 1, 1, 1, -23, -599, -8999, -104999, -868559, 5246641, 582598801, 21205760401, 571129277401, 11475082596121, 81837031796521, -7904119577117399, -596529385424263199, -28051840646006771999, -991870986521074646879, -21837506791918601443679
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(4*x^4*exp(4*x))/4)))

Formula

E.g.f.: exp(x - LambertW(4*x^4 * exp(4*x))/4) = ( LambertW(4*x^4 * exp(4*x))/(4*x^4) )^(1/4).
a(n) = n! * Sum_{k=0..floor(n/4)} (-1)^k * (4*k+1)^(n-3*k-1) / (k! * (n-4*k)!).
Showing 1-3 of 3 results.