cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A362473 E.g.f. satisfies A(x) = exp(x + x^4 * A(x)^4).

Original entry on oeis.org

1, 1, 1, 1, 25, 601, 9001, 105001, 1231441, 24146641, 740098801, 22443260401, 607394284201, 16102368745321, 497289446373721, 19072987370400601, 806135144596672801, 33945128330918599201, 1426006261391514829921, 63478993000497055809121
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-4*x^4*exp(4*x))/4)))

Formula

E.g.f.: exp(x - LambertW(-4*x^4 * exp(4*x))/4) = ( -LambertW(-4*x^4 * exp(4*x))/(4*x^4) )^(1/4).
a(n) = n! * Sum_{k=0..floor(n/4)} (4*k+1)^(n-3*k-1) / (k! * (n-4*k)!).

A362480 E.g.f. satisfies A(x) = exp(x - x^2 * A(x)^2).

Original entry on oeis.org

1, 1, -1, -17, -47, 961, 14191, -35825, -4258463, -46744703, 1252890271, 49630926511, 61171154353, -41944148256191, -1033550755723121, 24977027757497551, 2117415434541888961, 20487158235798909697, -3240242006475108681665, -146763820123398901335185
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(2*x^2*exp(2*x))/2)))

Formula

E.g.f.: exp(x - LambertW(2*x^2 * exp(2*x))/2) = sqrt( LambertW(2*x^2 * exp(2*x))/(2*x^2) ).
a(n) = n! * Sum_{k=0..floor(n/2)} (-1)^k * (2*k+1)^(n-k-1) / (k! * (n-2*k)!).

A362481 E.g.f. satisfies A(x) = exp(x - x^3 * A(x)^3).

Original entry on oeis.org

1, 1, 1, -5, -95, -959, -5159, 69721, 3113377, 64493857, 654012721, -13761498959, -1013114081759, -32273321679455, -492845589685175, 13357113599586121, 1410278045569310401, 61239473424756703681, 1270682827211021594977, -40402942687262364034463
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(3*x^3*exp(3*x))/3)))

Formula

E.g.f.: exp(x - LambertW(3*x^3 * exp(3*x))/3) = ( LambertW(3*x^3 * exp(3*x))/(3*x^3) )^(1/3).
a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * (3*k+1)^(n-2*k-1) / (k! * (n-3*k)!).
Showing 1-3 of 3 results.