cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A173258 Number of compositions of n where differences between neighboring parts are in {-1,1}.

Original entry on oeis.org

1, 1, 1, 3, 2, 4, 5, 5, 7, 10, 9, 14, 16, 19, 24, 31, 35, 45, 55, 66, 84, 104, 124, 156, 192, 236, 292, 363, 444, 551, 681, 839, 1040, 1287, 1586, 1967, 2430, 3001, 3717, 4597, 5683, 7034, 8697, 10758, 13312, 16469, 20369, 25204, 31180, 38574, 47726, 59047
Offset: 0

Views

Author

Alois P. Heinz, Jul 08 2012

Keywords

Examples

			a(3) = 3: [3], [2,1], [1,2].
a(4) = 2: [4], [1,2,1].
a(5) = 4: [5], [3,2], [2,3], [2,1,2].
a(6) = 5: [6], [3,2,1], [2,1,2,1], [1,2,3], [1,2,1,2].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n<1 or i<1, 0, `if`(n=i, 1, add(b(n-i, i+j), j=[-1, 1])))
        end:
    a:= n-> `if`(n=0, 1, add(b(n, j), j=1..n)):
    seq(a(n), n=0..70);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n < 1 || i < 1, 0, If[n == i, 1, Sum[b[n - i, i + j], {j, {-1, 1}}]]]; a[n_] := If[n == 0, 1, Sum[b[n, j], {j, 1, n}]]; Table[a[n], {n, 0, 70}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
  • PARI
    step(R,n)={matrix(n, n, i, j, if(i>j, if(j>1, R[i-j, j-1]) + if(j+1<=n, R[i-j, j+1])) )}
    a(n)={my(R=matid(n), t=(n==0), m=0); while(R, m++; t+=vecsum(R[n,]); R=step(R,n)); t} \\ Andrew Howroyd, Aug 23 2019

Formula

a(n) ~ c * d^n, where d=1.23729141259673487395949649334678514763130846902468..., c=1.134796087242490181499736234755111281606636700030106.... - Vaclav Kotesovec, May 01 2014
G.f.: 1 + Sum_{k>0} G(x,k) where G(x,k) = x^k*(1 + G(x,k+1) + G(x,k-1)) for k > 0 and G(x,0) = 0. - John Tyler Rascoe, Sep 16 2023

A364039 Triangle read by rows: T(n,k) is the number of integer compositions of n with first part k and differences between neighboring parts in {-1,1}.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 1, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 3, 2, 0, 0, 0, 0, 1, 0, 3, 2, 1, 2, 1, 0, 0, 0, 1, 0, 2, 3, 2, 1, 0, 0, 0, 0, 0, 1, 0, 3, 4, 3, 1, 1, 1, 0, 0, 0, 0, 1, 0, 4, 4, 4, 2, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

John Tyler Rascoe, Aug 06 2023

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 1;
  0, 1, 1, 1;
  0, 1, 0, 0, 1;
  0, 0, 2, 1, 0, 1;
  0, 2, 1, 1, 0, 0, 1;
  0, 1, 1, 1, 1, 0, 0, 1;
  0, 1, 3, 2, 0, 0, 0, 0, 1;
  0, 3, 2, 1, 2, 1, 0, 0, 0, 1;
  0, 2, 3, 2, 1, 0, 0, 0, 0, 0, 1;
  ...
For n = 6 there are a total of 5 compositions:
  T(6,1) = 2: (123), (1212)
  T(6,2) = 1: (2121)
  T(6,3) = 1: (321)
  T(6,6) = 1: (6)
		

Crossrefs

Cf. A291905 (column k=1), A173258 (row sums).

Programs

  • Maple
    T:= proc(n, i) option remember; `if`(n<1 or i<1, 0,
         `if`(n=i, 1, add(T(n-i, i+j), j=[-1, 1])))
        end: T(0$2):=1:
    seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Aug 08 2023
  • Python
    def A364039_rowlist(row_max):
        A = []
        for n in range(0,row_max+1):
            A.append([])
            for k in range(0,n+1):
                z = 0
                if n==k: z += 1
                elif k > 1 and k-1 <= n-k: z += A[n-k][k-1]
                if k+1 <= n-k and k != 0: z += A[n-k][k+1]
                A[n].append(z)
            print(A[n])
    A364039_rowlist(12)

Formula

T(n,n) = 1.
T(n,k) = T(n-k,k+1) + T(n-k,k-1) for 0 < k < n.
T(n,k) = 0 for n < k.
T(n,0) = 0 for 0 < n.

A372647 Number of compositions such that their set adjacent differences are a subset of {-1,1} and contain 1 as a part of the composition itself.

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 4, 1, 5, 5, 5, 10, 8, 14, 15, 22, 26, 31, 44, 47, 69, 80, 101, 131, 156, 203, 246, 315, 388, 484, 609, 746, 945, 1163, 1453, 1812, 2242, 2799, 3464, 4319, 5351, 6652, 8261, 10235, 12732, 15763, 19577, 24276, 30092, 37338, 46254, 57376, 71081
Offset: 0

Views

Author

John Tyler Rascoe, May 08 2024

Keywords

Examples

			The compositions for n = 6..8 are:
a(6) = 4: [3,2,1], [2,1,2,1], [1,2,3], [1,2,1,2].
a(7) = 1: [1,2,1,2,1].
a(8) = 5: [2,1,2,1,2], [3,2,1,2], [2,1,2,3], [2,3,2,1], [1,2,3,2].
		

Crossrefs

Cf. (row sums of A372646).
Showing 1-3 of 3 results.