cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362516 Number of vertex cuts in the n-gear graph.

Original entry on oeis.org

1, 5, 51, 293, 1383, 6017, 25315, 104941, 431775, 1768377, 7218555, 29388325, 119381239, 484031537, 1959295251, 7919693789, 31972642767, 128937189161, 519476334379, 2091181293589, 8412008183079, 33816433653921, 135865503379395, 545598121631437, 2190000348372223
Offset: 1

Views

Author

Eric W. Weisstein, Apr 23 2023

Keywords

Comments

Extended to n = 1 using formula/recurrence.

Crossrefs

Cf. A286188.

Programs

  • Mathematica
    Table[2 (4^n - 1) + 2 n - 4 n^2 - (1/2 (3 - Sqrt[17]))^n - (1/2 (3 + Sqrt[17]))^n, {n, 20}] // Expand
    LinearRecurrence[{10, -34, 44, -13, -14, 8}, {1, 5, 51, 293, 1383, 6017}, 20]
    CoefficientList[Series[(-1 + 5 x - 35 x^2 + 91 x^3 + 20 x^4 + 16 x^5)/((-1 + x)^3 (1 - 7 x + 10 x^2 + 8 x^3)), {x, 0, 20}], x]

Formula

a(n) = 2^(2*n+1) - 1 - A286188(n). - Pontus von Brömssen, Apr 23 2023
a(n) = 2*(4^n - 1) + 2*n - 4*n^2 - ((3 - sqrt(17))/2)^n - ((3 + sqrt(17))/2)^n.
a(n) = 10*a(n-1)-34*a(n-2)+44*a(n-3)-13*a(n-4)-14*a(n-5)+8*a(n-6).
G.f.: x*(-1 + 5*x - 35*x^2 + 91*x^3 + 20*x^4 + 16*x^5)/((-1 + x)^3*(1 - 7*x + 10*x^2 + 8*x^3)).
a(n) = -A206776(n)+2*4^n-2-4*n^2+2*n. - R. J. Mathar, Feb 18 2024

Extensions

More terms (based on data in A286188) from Pontus von Brömssen, Apr 23 2023