cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362582 Triangular array read by rows. T(n,k) is the number of alternating permutations of [2n+1] having exactly 2k elements to the left of 1, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 5, 6, 5, 61, 75, 75, 61, 1385, 1708, 1750, 1708, 1385, 50521, 62325, 64050, 64050, 62325, 50521, 2702765, 3334386, 3427875, 3438204, 3427875, 3334386, 2702765, 199360981, 245951615, 252857605, 253708455, 253708455, 252857605, 245951615, 199360981
Offset: 0

Views

Author

Geoffrey Critzer, Apr 25 2023

Keywords

Comments

Here, w = w_1,w_2,...,w_(2n+1) is an alternating permutation if w_1 < w_2 > w_3 < ... < w_(2n) > w_(2n+1).

Examples

			T(2,1) = 6 because we have: {2, 3, 1, 5, 4}, {2, 4, 1, 5, 3}, {2, 5, 1, 4, 3}, {3, 4, 1, 5, 2}, {3, 5, 1, 4, 2}, {4, 5, 1, 3, 2}.
Triangle begins
     1;
     1,     1;
     5,     6,     5;
    61,    75,    75,    61;
  1385,  1708,  1750,  1708,  1385;
 50521, 62325, 64050, 64050, 62325, 50521;
 ...
		

Crossrefs

Cf. A000182 (row sums), A000364 (column k=0), A000680.

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(o-1+j, u-j), j=1..u))
        end:
    T:= (n, k)-> binomial(2*n, 2*k)*b(2*k, 0)*b(2*(n-k), 0):
    seq(seq(T(n, k), k=0..n), n=0..8);  # Alois P. Heinz, Apr 25 2023
  • Mathematica
    nn = 6; B[n_] := (2 n)!/2^n; e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/e[-u z]*1/e[-z], {z, 0, nn}], {z, u}]] // Grid

Formula

Sum_{n>=0} Sum_{k=0..n} T(n,k)*u^k*z^n/A000680(n) = 1/(E(-u*z)*E(-z)) where E(z) = Sum_{n>=0} z^n/A000680(n).
T(n,k) = binomial(2*n,2*k)*A000111(2*k)*A000111(2*(n-k)). - Alois P. Heinz, Apr 25 2023