cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362597 Number of parking functions of size n avoiding the patterns 213 and 312.

Original entry on oeis.org

1, 1, 3, 12, 54, 259, 1293, 6634, 34716, 184389, 990711, 5372088, 29347794, 161317671, 891313569, 4946324886, 27552980088, 153982124809, 862997075691, 4848839608228, 27304369787694, 154059320699211, 870796075968693, 4929937918315522, 27950989413184404
Offset: 0

Views

Author

Lara Pudwell, Apr 27 2023

Keywords

Examples

			For n=3 the a(3)=12 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}; {3},{2},{1}.
		

Crossrefs

Programs

  • Maple
    A362597 := proc(n)
        if n = 0 then
            1;
        else
            add(add(binomial(n - 1, i)*(k + 1)*binomial(2*n - 2 - k, n - 1 - k)/n,i=0..k),k=0..n-1) ;
        end if;
    end proc:
    seq(A362597(n),n=0..60) ; # R. J. Mathar, Jan 11 2024
  • PARI
    a(n)={0^n + sum(k=0, n-1, sum(i=0, k, binomial(n - 1, i)*(k + 1)*binomial(2*n - 2 - k, n - 1 - k)/n))} \\ Andrew Howroyd, Apr 27 2023

Formula

For n>=1, a(n) = Sum_{k=0..n-1} Sum_{i=0..k} binomial(n - 1, i)*(k + 1)*binomial(2*n - 2 - k, n - 1 - k)/n.
D-finite with recurrence (n+1)*a(n) +3*(-4*n+1)*a(n-1) +(34*n-45)*a(n-2) +3*(4*n-17)*a(n-3) +3*(-n+4)*a(n-4)=0. - R. J. Mathar, Jan 11 2024