A362607 Number of integer partitions of n with more than one mode.
0, 0, 0, 1, 1, 2, 4, 4, 6, 9, 13, 13, 23, 23, 33, 45, 56, 64, 90, 101, 137, 169, 208, 246, 320, 379, 469, 567, 702, 828, 1035, 1215, 1488, 1772, 2139, 2533, 3076, 3612, 4333, 5117, 6113, 7168, 8557, 10003, 11862, 13899, 16385, 19109, 22525, 26198, 30729, 35736
Offset: 0
Keywords
Examples
The partition (3,2,2,1,1) has greatest multiplicity 2, and two parts of multiplicity 2 (namely 1 and 2), so is counted under a(9). The a(3) = 1 through a(9) = 9 partitions: (21) (31) (32) (42) (43) (53) (54) (41) (51) (52) (62) (63) (321) (61) (71) (72) (2211) (421) (431) (81) (521) (432) (3311) (531) (621) (32211) (222111)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000 (first 301 terms from John Tyler Rascoe)
Crossrefs
Programs
-
Maple
b:= proc(n, i, m, t) option remember; `if`(n=0, `if`(t=2, 1, 0), `if`(i<1, 0, add(b(n-i*j, i-1, max(j, m), `if`(j>m, 1, `if`(j=m, 2, t))), j=0..n/i))) end: a:= n-> b(n$2, 0$2): seq(a(n), n=0..51); # Alois P. Heinz, May 05 2024
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Length[Commonest[#]]>1&]],{n,0,30}]
-
PARI
G_x(N)={my(x='x+O('x^(N-1)), Ib(k,j) = if(k>j,1,0), A_x(u)=sum(i=1,N-u, sum(j=u+1, N-u, (x^(i*(u+j))*(1-x^u)*(1-x^j))/((1-x^(u*i))*(1-x^(j*i))) * prod(k=1,N-i*(u+j), (1-x^(k*(i+Ib(k,j))))/(1-x^k))))); concat([0,0,0],Vec(sum(u=1,N, A_x(u))))} G_x(51) \\ John Tyler Rascoe, Apr 05 2024
Formula
G.f.: Sum_{u>0} A(u,x) where A(u,x) = Sum_{i>0} Sum_{j>u} ( x^(i*(u+j))*(1-x^u)*(1-x^j) )/( (1-x^(u*i))*(1-x^(j*i)) ) * Product_{k>0} ( (1-x^(k*(i+[k>j])))/(1-x^k) ) is the g.f. for partitions of this kind with least mode u and [] is the Iverson bracket. - John Tyler Rascoe, Apr 05 2024
Comments