A362612 Number of integer partitions of n such that the greatest part is the unique mode.
0, 1, 2, 2, 3, 3, 4, 4, 6, 6, 7, 9, 10, 12, 15, 16, 19, 23, 26, 32, 37, 41, 48, 58, 65, 75, 88, 101, 115, 135, 151, 176, 200, 228, 261, 300, 336, 385, 439, 498, 561, 641, 717, 818, 921, 1036, 1166, 1321, 1477, 1667, 1867, 2099, 2346, 2640, 2944, 3303, 3684
Offset: 0
Keywords
Examples
The a(1) = 1 through a(10) = 7 partitions (A = 10): 1 2 3 4 5 6 7 8 9 A 11 111 22 221 33 331 44 333 55 1111 11111 222 2221 332 441 442 111111 1111111 2222 3321 3331 22211 22221 22222 11111111 111111111 222211 1111111111
Links
- John Tyler Rascoe, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Commonest[#]=={Max[#]}&]],{n,0,30}]
-
PARI
A_x(N)={my(x='x+O('x^N), g=sum(i=1, N, sum(j=1, N/i, x^(i*j)*prod(k=1,i-1,(1-x^(j*k))/(1-x^k))))); concat([0],Vec(g))} A_x(60) \\ John Tyler Rascoe, Apr 03 2024
Formula
G.f.: Sum_{i, j>0} x^(i*j) * Product_{k=1,i-1} ((1-x^(j*k))/(1-x^k)). - John Tyler Rascoe, Apr 03 2024
Comments