cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362744 Number of parking functions of size n avoiding the patterns 312 and 321.

Original entry on oeis.org

1, 1, 3, 13, 63, 324, 1736, 9589, 54223, 312369, 1826847, 10818156, 64737684, 390877456, 2378312780, 14568360645, 89766137967, 556008951667, 3459976045201, 21621154097573, 135619427912599, 853590782088272, 5389272616262656, 34123058549079788, 216621704634708868
Offset: 0

Views

Author

Lara Pudwell, May 01 2023

Keywords

Examples

			The a(3) = 13 parking functions, given in block notation, are {1},{2},{3}; {1,2},{},{3}; {1,2},{3},{}; {1},{2,3},{}; {1,2,3},{},{}; {1},{3},{2}; {1,3},{},{2}; {1,3},{2},{}; {2},{1},{3}; {2},{1,3},{}; {2},{3},{1}; {2,3},{},{1}; {2,3},{1},{}.
When n = 3 there are 5 Dyck paths:
   w(NNNEEE) = [3],     contributing 1 to the sum;
   w(NNENEE) = [2,1],   contributing 2+1 = 3 to the sum;
   w(NNEENE) = [2,1],   contributing 2+1 = 3 to the sum;
   w(NENNEE) = [1,2],   contributing 1+1 = 2 to the sum;
   w(NENENE) = [1,1,1], contributing (1+1)(1+1) = 4 to the sum.
Therefore, a(3) = 1+3+3+2+4 = 13.
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
         `if`(x=y, 1, b(x-1, y-1, 0)*(t+1)+b(x-1, y+1, t+1)))
        end:
    a:= n-> b(2*n, 0$2):
    seq(a(n), n=0..24);  # Alois P. Heinz, May 02 2023
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, 1, (2*(667*n^4-1439*n^3+656*n^2
          +146*n-96)*a(n-1)-3*(3*n-4)*(3*n-2)*(23*n^2-6*n-5)*a(n-2))/
           (4*(2*n+1)*(n+1)*(23*n^2-52*n+24)))
        end:
    seq(a(n), n=0..24);  # Alois P. Heinz, May 02 2023

Formula

Consider a Dyck path of semilength n to be a path from (0,0) to (n,n) consisting of N=(0,1) steps and E=(1,0) steps, staying weakly above y=x and let D(n) be the set of all such paths.
For any Dyck path d, let w(d) be the word of positive integers that records the lengths of the maximal consecutive strings of N-steps in d, let w(d)_i be the i-th entry of w(d), and let |w(d)| be the length of d.
a(n) = Sum_{d in D(n)} Product_{i=1..|w(d)|-1} (w(d)_i+1).
a(n) ~ 23 * 3^(3*n + 3/2) / (25 * sqrt(Pi) * 2^(2*n + 3) * n^(3/2)). - Vaclav Kotesovec, May 02 2023
From Jun Yan, Apr 13 2024: (Start)
a(n) = binomial(3*n + 1, n)/(n + 1) - Sum_{k=0..n-1} binomial(3*n - 3*k + 1, n - k) / (2^(k + 1)*(n - k + 1)).
G.f.: ((1 - x)*A(x) + 1)/(2 - x), where A(x) is the g.f. of A006013. (End)

Extensions

a(13)-a(24) from Alois P. Heinz, May 02 2023