cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362745 Triangular array read by rows. T(n,k) is the number of ordered pairs of n-permutations with exactly k rise/falls or fall/rises, n >= 0, 0 <= k <= max{0,n-1}.

Original entry on oeis.org

1, 1, 2, 2, 10, 16, 10, 88, 200, 200, 88, 1216, 3536, 4896, 3536, 1216, 24176, 85872, 149152, 149152, 85872, 24176, 654424, 2743728, 5714472, 7176352, 5714472, 2743728, 654424, 23136128, 111842432, 270769536, 407103104, 407103104, 270769536, 111842432, 23136128
Offset: 0

Views

Author

Geoffrey Critzer, May 01 2023

Keywords

Comments

Let ( (a_1,a_2,...,a_n), (b_1,b_2,...,b_n) ) be an ordered pair of n-permutations. Then the pairs (a_i,a_(i+1)) and (b_i,b_(i+1)) are both rises, both falls, a rise and a fall, or a fall and a rise. T(n,k) is the number of ordered pairs of n-permutations that have a total of k rise/falls and fall/rises.

Examples

			Triangle begins:
    1;
    1;
    2,    2;
   10,   16,   10;
   88,  200,  200,   88;
 1216, 3536, 4896, 3536, 1216;
 ...
In the ordered pair of permutations ( (1,2,3,5,4), (4,2,1,3,5) ) we have a rise/fall, rise/fall, rise/rise, fall/rise.  So this ordered pair is counted in T(5,3).
		

Crossrefs

Cf. A060350 (column k=0), A001044 (row sums), A259465.

Programs

  • Maple
    b:= proc(n, u, v) option remember; expand(`if`(n=0, 1,
          add(add(b(n-1, u-j, v-i), i=1..v)+
              add(b(n-1, u-j, v+i-1)*x, i=1..n-v), j=1..u)+
          add(add(b(n-1, u+j-1, v-i)*x, i=1..v)+
              add(b(n-1, u+j-1, v+i-1), i=1..n-v), j=1..n-u)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
    seq(T(n), n=0..10);  # Alois P. Heinz, May 01 2023
  • Mathematica
    nn = 8; A[z_] := Total[Select[Import["https://oeis.org/A060350/b060350.txt", "Table"],Length@# == 2 &][[All, 2]]*Table[z^n/n!^2, {n, 0, 250}]];B[n_] := n!^2; e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[((1 - u) A[(1 - u) z])/(1 - u A[(1 - u) z]), {z, 0, nn}], {z, u}]] // Flatten

Formula

Sum_{n>=0} Sum_{k=0..n-1} u^k*z^n/(n!)^2 = ((1 - u) A((1 - u) z))/(1 - u A((1 - u) z)) where A(z) = Sum_{n>=0} A060350*z^n/(n!)^2. Theorem 4 in Carlitz, Scoville, Vaughan link.