A362745 Triangular array read by rows. T(n,k) is the number of ordered pairs of n-permutations with exactly k rise/falls or fall/rises, n >= 0, 0 <= k <= max{0,n-1}.
1, 1, 2, 2, 10, 16, 10, 88, 200, 200, 88, 1216, 3536, 4896, 3536, 1216, 24176, 85872, 149152, 149152, 85872, 24176, 654424, 2743728, 5714472, 7176352, 5714472, 2743728, 654424, 23136128, 111842432, 270769536, 407103104, 407103104, 270769536, 111842432, 23136128
Offset: 0
Examples
Triangle begins: 1; 1; 2, 2; 10, 16, 10; 88, 200, 200, 88; 1216, 3536, 4896, 3536, 1216; ... In the ordered pair of permutations ( (1,2,3,5,4), (4,2,1,3,5) ) we have a rise/fall, rise/fall, rise/rise, fall/rise. So this ordered pair is counted in T(5,3).
Links
- Alois P. Heinz, Rows n = 0..70, flattened
- L. Carlitz, Richard Scoville, and Theresa Vaughan, Enumeration of pairs of permutations and sequences, Bull. Amer. Math. Soc. 80(5) (1974), 881-884.
Programs
-
Maple
b:= proc(n, u, v) option remember; expand(`if`(n=0, 1, add(add(b(n-1, u-j, v-i), i=1..v)+ add(b(n-1, u-j, v+i-1)*x, i=1..n-v), j=1..u)+ add(add(b(n-1, u+j-1, v-i)*x, i=1..v)+ add(b(n-1, u+j-1, v+i-1), i=1..n-v), j=1..n-u))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)): seq(T(n), n=0..10); # Alois P. Heinz, May 01 2023
-
Mathematica
nn = 8; A[z_] := Total[Select[Import["https://oeis.org/A060350/b060350.txt", "Table"],Length@# == 2 &][[All, 2]]*Table[z^n/n!^2, {n, 0, 250}]];B[n_] := n!^2; e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[((1 - u) A[(1 - u) z])/(1 - u A[(1 - u) z]), {z, 0, nn}], {z, u}]] // Flatten
Formula
Sum_{n>=0} Sum_{k=0..n-1} u^k*z^n/(n!)^2 = ((1 - u) A((1 - u) z))/(1 - u A((1 - u) z)) where A(z) = Sum_{n>=0} A060350*z^n/(n!)^2. Theorem 4 in Carlitz, Scoville, Vaughan link.
Comments