cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362759 Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of derangements of an n-set with k derangements.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 2, 7, 2, 1, 1, 0, 1, 3, 18, 16, 4, 1, 1, 0, 1, 3, 43, 138, 84, 4, 1, 1, 0, 1, 4, 93, 1559, 4642, 403, 7, 1, 1, 0, 1, 4, 200, 14337, 295058, 211600, 3028, 8, 1, 1, 0, 1, 5, 386, 117053, 15730237, 98019999, 13511246, 25431, 12, 1
Offset: 0

Views

Author

Andrew Howroyd, May 02 2023

Keywords

Comments

Isomorphism is up to permutation of the elements of the n-set. A derangement is a permutation without fixed points. Each derangement can be considered to be a set of disjoint directed cycles excluding singleton loops whose vertices cover the n-set. Permuting the elements of the n-set permutes each of the derangements in the multiset.

Examples

			Array begins:
===========================================================
n/k| 0 1   2      3        4           5              6 ...
---+-------------------------------------------------------
0  | 1 1   1      1        1           1              1 ...
1  | 1 0   0      0        0           0              0 ...
2  | 1 1   1      1        1           1              1 ...
3  | 1 1   2      2        3           3              4 ...
4  | 1 2   7     18       43          93            200 ...
5  | 1 2  16    138     1559       14337         117053 ...
6  | 1 4  84   4642   295058    15730237      706921410 ...
7  | 1 4 403 211600 98019999 36414994209 11282515303088 ...
  ...
		

Crossrefs

Columns k=0..3 are A000012, A002865, A362760, A362761.
Main diagonal is A362762.
Cf. A000166 (derangements), A320032, A362644, A362648.

Programs

  • PARI
    \\ here B(n,k) gives A320032(n,k).
    B(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(n,j)*k^j*j!)
    K(v)=my(S=Set(v)); prod(i=1, #S, my(k=S[i], c=#select(t->t==k, v)); B(c, k))
    R(v, m)=concat(vector(#v, i, my(t=v[i], g=gcd(t, m)); vector(g, i, t/g)))
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    T(n,k) = {if(n==0, 1, my(s=0); forpart(q=n, s += permcount(q) * polcoef(exp(sum(m=1, k, K(R(q,m))*x^m/m, O(x*x^k))), k)); s/n!)}

Formula

T(0,k) = T(2,k) = 1.