A362759 Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of derangements of an n-set with k derangements.
1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 2, 7, 2, 1, 1, 0, 1, 3, 18, 16, 4, 1, 1, 0, 1, 3, 43, 138, 84, 4, 1, 1, 0, 1, 4, 93, 1559, 4642, 403, 7, 1, 1, 0, 1, 4, 200, 14337, 295058, 211600, 3028, 8, 1, 1, 0, 1, 5, 386, 117053, 15730237, 98019999, 13511246, 25431, 12, 1
Offset: 0
Examples
Array begins: =========================================================== n/k| 0 1 2 3 4 5 6 ... ---+------------------------------------------------------- 0 | 1 1 1 1 1 1 1 ... 1 | 1 0 0 0 0 0 0 ... 2 | 1 1 1 1 1 1 1 ... 3 | 1 1 2 2 3 3 4 ... 4 | 1 2 7 18 43 93 200 ... 5 | 1 2 16 138 1559 14337 117053 ... 6 | 1 4 84 4642 295058 15730237 706921410 ... 7 | 1 4 403 211600 98019999 36414994209 11282515303088 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals).
Crossrefs
Programs
-
PARI
\\ here B(n,k) gives A320032(n,k). B(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(n,j)*k^j*j!) K(v)=my(S=Set(v)); prod(i=1, #S, my(k=S[i], c=#select(t->t==k, v)); B(c, k)) R(v, m)=concat(vector(#v, i, my(t=v[i], g=gcd(t, m)); vector(g, i, t/g))) permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} T(n,k) = {if(n==0, 1, my(s=0); forpart(q=n, s += permcount(q) * polcoef(exp(sum(m=1, k, K(R(q,m))*x^m/m, O(x*x^k))), k)); s/n!)}
Formula
T(0,k) = T(2,k) = 1.
Comments