A362961 a(n) = Sum_{b=0..floor(sqrt(n)), n-b^2 is square} b.
1, 1, 0, 2, 3, 0, 0, 2, 3, 4, 0, 0, 5, 0, 0, 4, 5, 3, 0, 6, 0, 0, 0, 0, 12, 6, 0, 0, 7, 0, 0, 4, 0, 8, 0, 6, 7, 0, 0, 8, 9, 0, 0, 0, 9, 0, 0, 0, 7, 13, 0, 10, 9, 0, 0, 0, 0, 10, 0, 0, 11, 0, 0, 8, 20, 0, 0, 10, 0, 0, 0, 6, 11, 12, 0, 0, 0, 0, 0, 12, 9, 10, 0
Offset: 1
Links
- Stefano Spezia, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_]:=Sum[b Boole[IntegerQ[Sqrt[n-b^2]]],{b,0,Floor[Sqrt[n]]}]; Array[a,83] (* Stefano Spezia, May 15 2023 *)
-
PARI
a(n) = sum(b=0, sqrtint(n), if (issquare(n-b^2), b)); \\ Michel Marcus, May 16 2023
-
Python
from gmpy2 import * a = lambda n: sum([b for b in range(0, isqrt(n) + 1) if is_square(n - (b*b))]) print([a(n) for n in range(1, 84)])
-
Python
from sympy import divisors from sympy.solvers.diophantine.diophantine import cornacchia def A362961(n): c = 0 for d in divisors(n): if (k:=d**2)>n: break q, r = divmod(n,k) if not r: c += sum(d*(a[0]+(a[1] if a[0]!=a[1] else 0)) for a in cornacchia(1,1,q) or []) return c # Chai Wah Wu, May 15 2023
Comments