A153278 Array read by antidiagonals of higher order Fubini numbers.
1, 1, 3, 1, 4, 13, 1, 5, 23, 75, 1, 6, 36, 175, 541, 1, 7, 52, 342, 1662, 4683, 1, 8, 71, 594, 4048, 18937, 47293, 1, 9, 93, 949, 8444, 57437, 251729, 545835, 1, 10, 118, 1425, 15775, 143783, 950512, 3824282, 7087261, 1, 11, 146, 2040, 27146, 313920, 2854261, 17975438, 65361237, 102247563
Offset: 1
Examples
The table on p.6 of Mezo begins: =========================================================== F_p,n|n=1|n=2|n=3.|.n=4.|..n=5.|....n=6.|.....n=7.|comment =========================================================== p=1..|.1.|.3.|.13.|..75.|..541.|...4683.|...47293.|.A000670 p=2..|.1.|.4.|.23.|.175.|.1662.|..18937.|..251729.|.A083355 p=3..|.1.|.5.|.36.|.342.|.4048.|..57437.|..950512.|.A099391 p=4..|.1.|.6.|.52.|.594.|.8444.|.143783.|.2854261.|.A363008 p=5..|.1.|.7.|.71.|.949.|15775.|.313920.|.7279795.|.A363009 ===========================================================
Links
- Alois P. Heinz, Antidiagonals n = 1..150, flattened
- Istvan Mezo, On powers of Stirling matrices, arXiv:0812.4047 [math.CO], 2008.
- K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela, and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, arXiv:quant-ph/0312202, 2003; J.Phys. A: Math.Gen. 37 3475-3487 (2004).
Programs
-
Maple
f:= proc(n) option remember; local k; if n<=1 then 1 else add(binomial(n, k) *f(n-k), k=1..n) fi end: stirtr:= proc(a) proc(n) option remember; add( a(k) *Stirling2(n,k), k=0..n) end end: F:= (p,n)-> (stirtr@@(p-1))(f)(n): seq(seq(F(d-n, n), n=1..d-1), d=1..13); # Alois P. Heinz, Feb 02 2009
-
Mathematica
f[n_] := f[n] = If[n <= 1, 1, Sum[Binomial[n, k]*f[n-k], {k, 1, n}]]; stirtr[a_] := Module[{g}, g[n_] := g[n] = Sum[a[k]*StirlingS2[n, k], {k, 0, n}]; g]; F[p_, n_] := (Composition @@ Table[stirtr, {p-1}])[f][n]; Table[Table[F[d-n, n], {n, 1, d-1}], {d, 1, 13}] // Flatten (* Jean-François Alcover, Mar 30 2016, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Feb 02 2009