cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363048 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) is the number of partitions of n whose greatest part is a multiple of k.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 1, 1, 0, 5, 3, 1, 1, 0, 7, 3, 2, 1, 1, 0, 11, 6, 4, 2, 1, 1, 0, 15, 7, 5, 3, 2, 1, 1, 0, 22, 12, 7, 6, 3, 2, 1, 1, 0, 30, 14, 11, 7, 5, 3, 2, 1, 1, 0, 42, 22, 14, 11, 8, 5, 3, 2, 1, 1, 0, 56, 27, 19, 14, 11, 7, 5, 3, 2, 1, 1, 0, 77, 40, 27, 21, 15, 12, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Seiichi Manyama, May 14 2023

Keywords

Examples

			Triangle begins:
  1;
  0,  1;
  0,  2,  1;
  0,  3,  1,  1;
  0,  5,  3,  1, 1;
  0,  7,  3,  2, 1, 1;
  0, 11,  6,  4, 2, 1, 1;
  0, 15,  7,  5, 3, 2, 1, 1;
  0, 22, 12,  7, 6, 3, 2, 1, 1;
  0, 30, 14, 11, 7, 5, 3, 2, 1, 1;
  ...
		

Crossrefs

Row sums give A323433.
Column k=0..5 give A000007, A000041, A027187, A363045, A363046, A363047.
T(2n,n) gives A052810.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-1)+b(n-i, min(n-i, i))))
        end:
    T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), add(
        (j-> b(n-j, min(n-j, j)))(k*i), i=0..n/k)):
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, May 14 2023
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[n - i, i]]]];
    T[n_, k_] := If[k == 0, If[n == 0, 1, 0], Sum[Function[j, b[n - j, Min[n - j, j]]][k*i], {i, 0, n/k}]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Oct 20 2023, after Alois P. Heinz *)
  • PARI
    T(n, k) = sum(j=0, n, #partitions(n-k*j, k*j));

Formula

For k > 0, g.f. of column k: Sum_{i>=0} x^(k*i)/Product_{j=1..k*i} (1-x^j).