cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A363045 Number of partitions of n whose greatest part is a multiple of 3.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 4, 5, 7, 11, 14, 19, 27, 34, 45, 60, 77, 99, 130, 163, 208, 265, 333, 417, 526, 651, 810, 1004, 1237, 1519, 1869, 2278, 2780, 3382, 4101, 4958, 5995, 7210, 8669, 10398, 12444, 14859, 17730, 21086, 25057, 29718, 35186, 41584, 49100, 57842, 68075, 79991
Offset: 0

Views

Author

Seiichi Manyama, May 14 2023

Keywords

Crossrefs

Column 3 of A363048.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-1)+b(n-i, min(n-i, i))))
        end:
    a:= n-> add(b(n-3*i, min(n-3*i, 3*i)), i=0..n/3):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 14 2023
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[n - i, i]]]];
    a[n_] := Sum[b[n - 3*i, Min[n - 3*i, 3*i]], {i, 0, n/3}];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 23 2023, after Alois P. Heinz *)
  • PARI
    my(N=60, x='x+O('x^N)); Vec(sum(k=0, N, x^(3*k)/prod(j=1, 3*k, 1-x^j)))

Formula

G.f.: Sum_{k>=0} x^(3*k)/Product_{j=1..3*k} (1-x^j).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (12*sqrt(3)*n) * (1 - (1/Pi + Pi/72)*sqrt(3/(2*n))). - Vaclav Kotesovec, May 20 2023

A363046 Number of partitions of n whose greatest part is a multiple of 4.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 2, 3, 6, 7, 11, 14, 21, 26, 36, 45, 62, 76, 100, 124, 162, 199, 255, 314, 399, 488, 612, 748, 932, 1134, 1400, 1699, 2086, 2520, 3072, 3700, 4488, 5384, 6494, 7766, 9326, 11112, 13283, 15778, 18788, 22245, 26386, 31150, 36825, 43345, 51070, 59953
Offset: 0

Views

Author

Seiichi Manyama, May 14 2023

Keywords

Crossrefs

Column 4 of A363048.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-1)+b(n-i, min(n-i, i))))
        end:
    a:= n-> add(b(n-4*i, min(n-4*i, 4*i)), i=0..n/4):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 14 2023
  • PARI
    my(N=60, x='x+O('x^N)); Vec(sum(k=0, N, x^(4*k)/prod(j=1, 4*k, 1-x^j)))

Formula

G.f.: Sum_{k>=0} x^(4*k)/Product_{j=1..4*k} (1-x^j).
a(n) ~ A000041(n)/4. - Vaclav Kotesovec, May 21 2023

A363047 Number of partitions of n whose greatest part is a multiple of 5.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 11, 15, 21, 28, 38, 49, 64, 82, 105, 134, 168, 211, 263, 327, 406, 501, 616, 757, 926, 1133, 1378, 1676, 2031, 2460, 2970, 3581, 4306, 5173, 6197, 7419, 8855, 10561, 12565, 14934, 17712, 20982, 24805, 29294, 34529, 40658, 47785, 56104
Offset: 0

Views

Author

Seiichi Manyama, May 14 2023

Keywords

Crossrefs

Column 5 of A363048.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-1)+b(n-i, min(n-i, i))))
        end:
    a:= n-> add(b(n-5*i, min(n-5*i, 5*i)), i=0..n/5):
    seq(a(n), n=0..52);  # Alois P. Heinz, May 14 2023
  • PARI
    my(N=60, x='x+O('x^N)); Vec(sum(k=0, N, x^(5*k)/prod(j=1, 5*k, 1-x^j)))

Formula

G.f.: Sum_{k>=0} x^(5*k)/Product_{j=1..5*k} (1-x^j).
a(n) ~ A000041(n)/5. - Vaclav Kotesovec, May 21 2023

A373029 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) is the number of distinct partitions p of n such that max(p) is a multiple of k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 4, 2, 2, 1, 1, 1, 0, 5, 3, 1, 2, 1, 1, 1, 0, 6, 3, 1, 2, 2, 1, 1, 1, 0, 8, 4, 3, 2, 2, 2, 1, 1, 1, 0, 10, 5, 3, 2, 3, 2, 2, 1, 1, 1, 0, 12, 6, 4, 2, 3, 3, 2, 2, 1, 1, 1, 0, 15, 7, 6, 3, 3, 4, 3, 2, 2, 1, 1, 1, 0, 18, 9, 6, 4, 3, 4, 4, 3, 2, 2, 1, 1, 1
Offset: 0

Views

Author

Seiichi Manyama, May 20 2024

Keywords

Examples

			Triangle begins:
  1;
  0,  1;
  0,  1, 1;
  0,  2, 1, 1;
  0,  2, 1, 1, 1;
  0,  3, 1, 1, 1, 1;
  0,  4, 2, 2, 1, 1, 1;
  0,  5, 3, 1, 2, 1, 1, 1;
  0,  6, 3, 1, 2, 2, 1, 1, 1;
  0,  8, 4, 3, 2, 2, 2, 1, 1, 1;
  0, 10, 5, 3, 2, 3, 2, 2, 1, 1, 1;
  0, 12, 6, 4, 2, 3, 3, 2, 2, 1, 1, 1;
  0, 15, 7, 6, 3, 3, 4, 3, 2, 2, 1, 1, 1;
  0, 18, 9, 6, 4, 3, 4, 4, 3, 2, 2, 1, 1, 1;
		

Crossrefs

Row sums give A373030.
Column k=0..3 give A000007, A000009, A026838, A372893.
T(2n,n) gives A000009.
Cf. A363048.

Formula

For k > 0, g.f. of column k: Sum_{i>=0} x^(k*i) * Product_{j=1..k*i-1} (1+x^j).
Showing 1-4 of 4 results.