A363048 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) is the number of partitions of n whose greatest part is a multiple of k.
1, 0, 1, 0, 2, 1, 0, 3, 1, 1, 0, 5, 3, 1, 1, 0, 7, 3, 2, 1, 1, 0, 11, 6, 4, 2, 1, 1, 0, 15, 7, 5, 3, 2, 1, 1, 0, 22, 12, 7, 6, 3, 2, 1, 1, 0, 30, 14, 11, 7, 5, 3, 2, 1, 1, 0, 42, 22, 14, 11, 8, 5, 3, 2, 1, 1, 0, 56, 27, 19, 14, 11, 7, 5, 3, 2, 1, 1, 0, 77, 40, 27, 21, 15, 12, 7, 5, 3, 2, 1, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 2, 1; 0, 3, 1, 1; 0, 5, 3, 1, 1; 0, 7, 3, 2, 1, 1; 0, 11, 6, 4, 2, 1, 1; 0, 15, 7, 5, 3, 2, 1, 1; 0, 22, 12, 7, 6, 3, 2, 1, 1; 0, 30, 14, 11, 7, 5, 3, 2, 1, 1; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+b(n-i, min(n-i, i)))) end: T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), add( (j-> b(n-j, min(n-j, j)))(k*i), i=0..n/k)): seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, May 14 2023
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[n - i, i]]]]; T[n_, k_] := If[k == 0, If[n == 0, 1, 0], Sum[Function[j, b[n - j, Min[n - j, j]]][k*i], {i, 0, n/k}]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Oct 20 2023, after Alois P. Heinz *)
-
PARI
T(n, k) = sum(j=0, n, #partitions(n-k*j, k*j));
Formula
For k > 0, g.f. of column k: Sum_{i>=0} x^(k*i)/Product_{j=1..k*i} (1-x^j).