cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363051 a(n) = Sum_{b=0..floor(sqrt(n/2)), n-b^2 is square} b.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 2, 0, 0, 0, 1, 3, 0, 2, 0, 0, 0, 0, 3, 1, 0, 0, 2, 0, 0, 4, 0, 3, 0, 0, 1, 0, 0, 2, 4, 0, 0, 0, 3, 0, 0, 0, 0, 6, 0, 4, 2, 0, 0, 0, 0, 3, 0, 0, 5, 0, 0, 0, 5, 0, 0, 2, 0, 0, 0, 6, 3, 5, 0, 0, 0, 0, 0, 4, 0, 1, 0
Offset: 1

Views

Author

DarĂ­o Clavijo, May 14 2023

Keywords

Comments

a(n) = 0 if n in A022544.
a(n) > 0 if n in A001481.

Crossrefs

Programs

  • Maple
    A363051 := proc(n)
        local x,a ;
        a := 0 ;
        for x from 1 do
            if x^2 > n/2 then
                return a;
            end if;
            if issqr(n-x^2) then
                a := a+x ;
            end if;
        end do:
    end proc:
    seq(A363051(n),n=1..100) ; # R. J. Mathar, Jan 31 2024
  • Mathematica
    a[n_]:=Sum[b Boole[IntegerQ[Sqrt[n-b^2]]],{b,0,Floor[Sqrt[n/2]]}]; Array[a,83] (* Stefano Spezia, May 15 2023 *)
  • Python
    from gmpy2 import *
    a = lambda n: sum([b for b in range(0, isqrt(n >> 1) + 1) if is_square(n - (b*b))])
    print([a(n) for n in range(1, 84)])
    
  • Python
    from sympy.solvers.diophantine.diophantine import diop_DN
    def A363051(n): return sum(min(a) for a in diop_DN(-1,n))>>1 # Chai Wah Wu, May 16 2023