A363061 Number of k <= P(n) such that rad(k) | P(n), where rad(n) = A007947(n) and P(n) = A002110(n).
1, 2, 5, 18, 68, 283, 1161, 4843, 19985, 83074, 349670, 1456458, 6107257, 25547835, 106115655, 440396113, 1833079809, 7642924612, 31705433101, 131711607956, 546283729493, 2257462298234, 9339325821411, 38593708318690, 159600066415313, 661371515924516, 2736805917843710
Offset: 0
Examples
a(0) = 1 since P(0) = 1 and 1 | 1. a(1) = 2 since P(1) = 2 and both 1 | 2 and 2 | 2. a(2) = 5 since P(2) = 6 and rad(m) | 6 for m = {1, 2, 3, 4, 6}. a(3) = 18 since P(3) = 30 and rad(m) | 30 for m = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30}, etc. Regarding a(3), we see that there are 18 terms in the tensor product of prime power ranges of 2, 3, and 5 that do not exceed 30: 5^0X | 2^0 2^1 2^2 2^3 2^4 5^1X | 2^0 2^1 2^2 5^2X | 2^0 -------------------------- ------------------ ---------- 3^0 | 1 2 4 8 16 3^0 | 5 10 20 3^0 | 25 3^1 | 3 6 12 24 3^1 | 15 30 3^2 | 9 18 3^3 | 27 Hence, a(3) = 18. This approach proves handy for larger n.
Links
- Bert Dobbelaere, Python program
Programs
-
Mathematica
f[1] = 1; f[n_] := Function[w, ToExpression@ StringJoin["Block[{n = ", ToString@ n, ", k = 0}, Flatten@ Table[k++, ", Most@ Flatten@ Map[{#, ", "} &, #], "]; k]"] &@ MapIndexed[ Function[p, StringJoin["{", ToString@ Last@ p, ", 0, Log[", ToString@ First@ p, ", n/(", ToString@ InputForm[Times @@ Map[Power @@ # &, Take[w, First@ #2 - 1]]], ")]}"] ]@ w[[First@ #2]] &, w]]@ Map[{#, ToExpression["p" <> ToString@ PrimePi@ #]} &, FactorInteger[n][[All, 1]]]; Map[f, FoldList[Times, 1, Prime@ Range@ 9] ]
Extensions
Corrected a(15) and added a(16)-a(23) from Bert Dobbelaere, Jun 27 2023
a(24)-a(26) from Martin Ehrenstein, Jul 08 2023