A379746 a(1)=1. For n>1 if a(n-1)=A002110(k), a(n)=prime(k+1). Otherwise a(n) is the smallest novel number whose prime factors have already occurred as previous terms.
1, 2, 3, 4, 6, 5, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 7, 14, 21, 28, 32, 35, 36, 40, 42, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 125, 126, 128, 135, 140, 144, 147, 150, 160, 162, 168, 175, 180
Offset: 1
A364225 a(n) = number of k <= m such that rad(k) | m, where m = A025487(n) and rad(n) = A007947(n).
1, 2, 3, 5, 4, 8, 5, 11, 18, 6, 14, 15, 26, 7, 18, 20, 36, 8, 23, 44, 25, 68, 26, 49, 9, 29, 58, 31, 96, 32, 65, 10, 35, 76, 38, 131, 39, 83, 84, 11, 88, 42, 156, 43, 97, 45, 174, 46, 104, 106, 12, 111, 50, 283, 206, 51, 121, 53, 228, 54, 130, 133, 13, 138, 58
Offset: 1
Keywords
Comments
Not a permutation of natural numbers: a(4) = a(7) = 5.
Let S_rad(m) be the sequence { k : rad(k) | rad(m) }. This sequence gives the number of k <= rad(m). Seen another way, this sequence gives the position of m in S_rad(m).
The number m appears after its factors in S_rad(m). If k < sqrt(m) then k^2 also appears before m.
Examples
a(1) = 1 since 1 is the only number k that does not exceed 1 such that rad(k) | 1. a(2) = 2 since k in {1, 2} are such that rad(k) | 2. a(3) = 3 since k in {1, 2, 4} are such that rad(k) | 4. a(4) = 5 since k in {1, 2, 3, 4, 6} are such that rad(k) | 6, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..1809 (all terms a(n) <= A002110(10))
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..1809, accentuating primorial A025487(n) in red, noting a(n) above in black, and labeling n in blue italic below for the first 24 terms.
Programs
-
Mathematica
rad[x_] := Times @@ FactorInteger[#][[All, 1]]; Map[Function[{n, r}, Count[Range[n], _?(Divisible[r, rad[#]] &)]] @@ {#, rad[#]} &, {1}~Join~Select[Range[Times @@ Prime@ Range[6]], # == Transpose@ {Prime@ Range[Length[#]], ReverseSort[#[[All, -1]] ]} &@ FactorInteger[#] &] ]
A380483 a(n) = least k such that A010846(6*prime(k)) = n, or -1 if no solution exists.
3, 4, -1, -1, 5, 6, -1, 7, 8, 9, -1, 10, -1, 12, 13, 14, 16, 17, 19, 21, 23, 24, 25, 29, 31, 32, 35, 38, 40, 44, 48, 54, 55, 62, 67, 69, 73, 77, 84, 93, 98, 106, 119, 124, 130, 136, 151, 165, 173, 184, 191, 211, 219, 232, 243, 270, 296, 310, 328, 343, 378, 399, 422
Offset: 18
Keywords
Comments
Conjecture: n = 30 is the largest number for which a(n) = -1.
Examples
Let f = A010846. For k >= 3 and m = 6*prime(k), f(k) = [k=3] + f(6) + Sum_{j=0..floor(log_3 m)} floor(log_2 m/3^j), with Iverson brackets. (This, since for k = 3, prime(k)^2 < 2*3*prime(k) < prime(k)^3, but for k > 3, 2*3*prime(k) < prime(k)^2.) a(18) = 3 since 2*3*prime(3) = 30 is the smallest sphenic number k, and f(30) = A363061(3) = 18. This is to say that row 30 of A162306 = {m : rad(m) | 30} = {1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,27,30} has cardinality 18. a(19) = 4 since 2*3*prime(4) = 42 and f(42) = 19. This is to say that row 30 of A162306 = {m : rad(m) | 42} = {1,2,3,4,6,7,8,9,12,14,16,18,21,24,27,28,32,36,42} has cardinality 19. a(m) = -1, m = 20..21, since for k >= 3, there exists no solution to f(6*prime(k)) = m. a(22) = 5 since 2*3*prime(5) = 66 and f(66) = 22. a(23) = 6 since 2*3*prime(6) = 78 and f(78) = 23. a(24) = = -1 since for k >= 3, there exists no solution to f(6*prime(k)) = 24. a(25) = 7 since 2*3*prime(7) = 102 and f(102) = 25. a(26) = 8 since 2*3*prime(8) = 114 and f(114) = 26. a(27) = 9 since 2*3*prime(9) = 138 and f(138) = 27. a(28) = = -1 since for k >= 3, there exists no solution to f(6*prime(k)) = 28. a(29) = 10 since 2*3*prime(10) = 174 and f(174) = 29. a(30) = = -1 since for k >= 3, there exists no solution to f(6*prime(k)) = 30. Note: 2*3*prime(11) = 186; f(186) = f(174) = 29. a(31) = 12 since 2*3*prime(12) = 222 and f(222) = 31, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 18..280
- Michael De Vlieger, Plot of terms k = p^a*q^b*r^c, primes p < q < r, in row a(n) of A162306, with n = 18..58 and a(n) > -1, at (x,y,z) = (a,b,c). For a(n) there are n blocks in each diagram.
Programs
-
Mathematica
k = 3; Table[While[Set[t, Boole[k == 3] + 5 + Sum[Floor[1 + Log2[#/3^j]], {j, 0, Floor[Log[3, #]]}] &[6*Prime[k] ] ] < n, k++]; If[t == n, k, -1], {n, 18, 30}]
A383180 Irregular table T(n,k) = A010846(A019565(2^n + k)).
1, 2, 2, 5, 2, 6, 5, 18, 2, 6, 5, 19, 5, 20, 16, 68, 2, 7, 6, 22, 5, 21, 18, 77, 5, 22, 17, 79, 16, 74, 60, 283, 2, 7, 6, 23, 5, 23, 18, 80, 5, 22, 18, 82, 16, 78, 62, 295, 5, 24, 19, 87, 16, 82, 64, 315, 15, 80, 62, 316, 55, 290, 226, 1161
Offset: 0
Examples
Triangle begins: 0: 1; 1: 2; 2: 2, 5; 3: 2, 6, 5, 18; 4: 2, 6, 5, 19, 5, 20, 16, 68; 5: 2, 7, 6, 22, 5, 21, 18, 77, 5, 22, 17, 79, 16, 74, 60, 283; ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..16384 (rows n = 0..14, flattened)
- Michael De Vlieger, Log log scatterplot of a(n), n = 0..2^14.
- Michael De Vlieger, Fan style binary tree showing a(n) for n = 0..14, with a color function showing smaller numbers in reds and oranges, larger numbers in blues and magentas.
Programs
-
Mathematica
(* Load the "theta" program at the Mathematica link in A369609, then: *) f[x_] := Times @@ Prime@ Position[Reverse@ IntegerDigits[x, 2], 1][[All, 1]]; Table[theta[f[2^n + k] ], {n, 0, 7}, {k, 0, 2^n - 1}]
Formula
A363794 a(n) = smallest prime(n)-smooth number k such that r(k) >= r(P(n+1)), where r(n) = A010846(n) and P(n) = A002110(n).
16, 72, 540, 6300, 92400, 1681680, 36756720, 921470550, 27886608750, 970453984500, 37905932634570
Offset: 1
Comments
Examples
a(1) = 16 since r(2^4) = 5 and r(6) = 5; numbers in row 16 of A162306 are its divisors {1, 2, 4, 8, 16}, while row 6 of A162306 is {1, 2, 3, 4, 6}. a(2) = 72 = A003586(18) since r(72) = r(30) = 18. 72 is the 8th term in A003586 that is not in A000961. a(3) = 540 since r(540) = 69 which exceeds r(210) = 68. a(4) = 6300 since r(6300) = 290 which exceeds r(2310) = 283, etc. Table showing the relationship of a(n) to r(P(n)) = A363061(n), with p(n) = prime(n), P(n+1) = A002110(n+1), r(a(n)) = A010846(a(n)), and j the index such that S(r(a(n))) = T(j) = a(n). a(n) = m*P(n). n p(n) P(n+1) a(n) r(P(n)) r(a(n)) j m -------------------------------------------------------------- 1 2 6 16 5 5 4 8 2 3 30 72 18 18 8 12 3 5 210 540 68 69 13 18 4 7 2310 6300 283 290 22 30 5 11 30030 92400 1161 1165 29 40 6 13 510510 1681680 4843 4848 42 56 7 17 9699690 36756720 19985 19994 53 72 8 19 223092870 921470550 83074 83435 68 95 9 23 6469693230 27886608750 349670 351047 89 125 10 29 200560490130 970453984500 1456458 1457926 107 150
Crossrefs
Programs
-
Mathematica
nn = 6; rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; f[x_] := FactorInteger[x][[-1, 1]]; S = Array[Product[Prime[i], {i, #}] &, nn + 1]; Table[Set[{p, q}, Prime[n + {0, 1}]]; r = Count[Range[S[[n + 1]]], _?(f[#] <= q &)]; c = k = 1; While[Or[c < r, rad[k] != S[[n]]], If[f[k] <= p, c++]; k++]; k, {n, nn}]
Formula
a(n) >= A363061(n).
A363844 Number of k <= P(n) such that gcd(k,P(n)) > 1, yet there is a prime q | k that does not divide P(n), where P(n) = A002110(n).
0, 0, 0, 5, 95, 1548, 23110, 413508, 8020826, 186514437, 5447473481, 169902931273, 6317112341154, 260105450523376, 11228680152402376, 529602052783103298, 28154196548377380922, 1665532558381753842459, 101854713853486313230170, 6839699495691464491151135, 486637286249491454965285898
Offset: 0
Examples
a(0) = 0 since P(0) = 1; phi(1) = 1 and A010846(1) = 1, hence 1 - 1 - 1 + 1 = 0. a(1) = 0 since P(1) = 2; phi(2) = 1 and A010846(2) = 2, hence 2 - 1 - 2 + 1 = 0. a(2) = 0 since P(2) = 6; phi(6) = 2 and A010846(6) = 5, hence 6 - 2 - 5 + 1 = 0. a(3) = 5 since P(3) = 30; phi(30) = 8 and A010846(6) = 5, hence 30 - 8 - 18 + 1 = 5. We can also look at this as the cardinality of the set {1..30} \ ({1, 7, 11, 13, 17, 19, 23, 29} U {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30}) = {14, 21, 22, 26, 28}, therefore a(3) = 5. Table relating a(n) to A002110(n), A363061(n), and A005867(n). n A002110(n) A363061(n) a(n) A005867(n) -------------------------------------------- 0 1 1 0 1 1 2 2 0 1 2 6 5 0 2 3 30 18 5 8 4 210 68 95 48 5 2310 283 1548 480 6 30030 1161 23110 5760 7 510510 4843 413508 92160 8 9699690 19985 8020826 1658880 ...
Programs
-
Mathematica
b = Map[Last[ToExpression /@ StringSplit[#]] &, Split[Import["https://oeis.org/A363061/b363061.txt", "Data"]][[2 ;; -1, -1]]]; Array[(If[# == 0, Set[{k, p}, {1, 1}], p *= Prime[#]; k *= (Prime[#] - 1)]; p - k - b[[# + 1]] + 1) &, Length[b], 0]
Comments
Examples
Links
Crossrefs
Programs
Mathematica
Formula