A363312
Expansion of g.f. A(x) satisfying 1/2 = Sum_{n=-oo..+oo} x^n * (A(x) - x^n)^(n-1), with a(0) = 3.
Original entry on oeis.org
3, 8, 68, 656, 6924, 77816, 912504, 11043616, 136909712, 1729812880, 22193496988, 288368706416, 3786876943856, 50180784019384, 670150485880336, 9010466250798080, 121871951481594296, 1657086342551799752, 22637216782139196588, 310547100988853539728
Offset: 0
G.f.: A(x) = 3 + 8*x + 68*x^2 + 656*x^3 + 6924*x^4 + 77816*x^5 + 912504*x^6 + 11043616*x^7 + 136909712*x^8 + 1729812880*x^9 + ...
-
{a(n) = my(A=[3]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(-2 + 2^2*sum(m=-#A, #A, x^m * (Ser(A) - x^m)^(m-1) ), #A-1););A[n+1]}
for(n=0,30,print1(a(n),", "))
A363313
Expansion of g.f. A(x) satisfying 1/3 = Sum_{n=-oo..+oo} x^n * (A(x) - x^n)^(n-1), with a(0) = 4.
Original entry on oeis.org
4, 18, 216, 3006, 46062, 752058, 12824370, 225765756, 4072115322, 74865020256, 1397774141280, 26431211243142, 505157673609054, 9742590254518956, 189370217827381284, 3705934209907310622, 72957899444047650828, 1443901345003970392266, 28710711213830156663136
Offset: 0
G.f.: A(x) = 4 + 18*x + 216*x^2 + 3006*x^3 + 46062*x^4 + 752058*x^5 + 12824370*x^6 + 225765756*x^7 + 4072115322*x^8 + 74865020256*x^9 + ...
-
{a(n) = my(A=[4]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(-3 + 3^2*sum(m=-#A, #A, x^m * (Ser(A) - x^m)^(m-1) ), #A-1););A[n+1]}
for(n=0,30,print1(a(n),", "))
A363314
Expansion of g.f. A(x) satisfying 1/4 = Sum_{n=-oo..+oo} x^n * (A(x) - x^n)^(n-1), with a(0) = 5.
Original entry on oeis.org
5, 32, 496, 9024, 181296, 3882848, 86887712, 2007577472, 47530180736, 1147071160768, 28114384217104, 697913487791552, 17511114852998912, 443374443981736160, 11314170816869911232, 290688529521060711424, 7513202655833624201472, 195216134898681278515232
Offset: 0
G.f.: A(x) = 5 + 32*x + 496*x^2 + 9024*x^3 + 181296*x^4 + 3882848*x^5 + 86887712*x^6 + 2007577472*x^7 + 47530180736*x^8 + ...
-
{a(n) = my(A=[5]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(-4 + 4^2*sum(m=-#A, #A, x^m * (Ser(A) - x^m)^(m-1) ), #A-1););A[n+1]}
for(n=0,30,print1(a(n),", "))
A363315
Expansion of g.f. A(x) satisfying 1/5 = Sum_{n=-oo..+oo} x^n * (A(x) - x^n)^(n-1), with a(0) = 6.
Original entry on oeis.org
6, 50, 950, 21350, 530700, 14067650, 389701050, 11147799700, 326779719500, 9764739197800, 296342706620800, 9108989853295550, 283002934668287000, 8872796279035164100, 280368062326854982450, 8919740526808334086550, 285476263708658548421000, 9185078302539674382641450
Offset: 0
G.f.: A(x) = 6 + 50*x + 950*x^2 + 21350*x^3 + 530700*x^4 + 14067650*x^5 + 389701050*x^6 + 11147799700*x^7 + 326779719500*x^8 + ...
-
{a(n) = my(A=[6]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(-5 + 5^2*sum(m=-#A, #A, x^m * (Ser(A) - x^m)^(m-1) ), #A-1););A[n+1]}
for(n=0,30,print1(a(n),", "))
Showing 1-4 of 4 results.
Comments