A357227
a(n) = coefficient of x^n, n >= 0, in A(x) such that: 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - x^n)^(n-1).
Original entry on oeis.org
1, 1, 5, 27, 156, 961, 6145, 40546, 273784, 1883468, 13153544, 93012247, 664640794, 4791939802, 34816034143, 254659426691, 1873698891024, 13858201221637, 102975937795619, 768385165594607, 5755185884844403, 43253819566052165, 326093530416255178, 2465456045342545908
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 27*x^3 + 156*x^4 + 961*x^5 + 6145*x^6 + 40546*x^7 + 273784*x^8 + 1883468*x^9 + 13153544*x^10 + 93012247*x^11 + 664640794*x^12 + ...
where
1 = ... + x^(-3)/(2*A(x) - x^(-3))^4 + x^(-2)/(2*A(x) - x^(-2))^3 + x^(-1)/(2*A(x) - x^(-1))^2 + 1/(2*A(x) - 1) + x + x^2*(2*A(x) - x^2) + x^3*(2*A(x) - x^3)^2 + x^4*(2*A(x) - x^4)^3 + ... + x^n*(2*A(x) - x^n)^(n-1) + ...
SPECIFIC VALUES.
A(1/9) = 1.30108724398914093656591796643458817060949...
A(1/10) = 1.22176622612326449515553495048940456186175...
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff(-1 + sum(m=-#A, #A, x^m * (2*Ser(A) - x^m)^(m-1) ), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff(-1 + sum(m=-#A, #A, x^(2*m) * (2*Ser(A) - x^m)^(m-1) )/(2*Ser(A)), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff(-1 + sum(m=-#A, #A, (-1)^(m+1) * x^(m^2)/(1 - 2*Ser(A)*x^m)^(m+1) ), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
-
{a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff(-1 + sum(m=-#A, #A, (-1)^(m+1) * x^(m*(m-1))/(1 - 2*Ser(A)*x^m)^(m+1) )/(2*Ser(A)), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A363312
Expansion of g.f. A(x) satisfying 1/2 = Sum_{n=-oo..+oo} x^n * (A(x) - x^n)^(n-1), with a(0) = 3.
Original entry on oeis.org
3, 8, 68, 656, 6924, 77816, 912504, 11043616, 136909712, 1729812880, 22193496988, 288368706416, 3786876943856, 50180784019384, 670150485880336, 9010466250798080, 121871951481594296, 1657086342551799752, 22637216782139196588, 310547100988853539728
Offset: 0
G.f.: A(x) = 3 + 8*x + 68*x^2 + 656*x^3 + 6924*x^4 + 77816*x^5 + 912504*x^6 + 11043616*x^7 + 136909712*x^8 + 1729812880*x^9 + ...
-
{a(n) = my(A=[3]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(-2 + 2^2*sum(m=-#A, #A, x^m * (Ser(A) - x^m)^(m-1) ), #A-1););A[n+1]}
for(n=0,30,print1(a(n),", "))
A363314
Expansion of g.f. A(x) satisfying 1/4 = Sum_{n=-oo..+oo} x^n * (A(x) - x^n)^(n-1), with a(0) = 5.
Original entry on oeis.org
5, 32, 496, 9024, 181296, 3882848, 86887712, 2007577472, 47530180736, 1147071160768, 28114384217104, 697913487791552, 17511114852998912, 443374443981736160, 11314170816869911232, 290688529521060711424, 7513202655833624201472, 195216134898681278515232
Offset: 0
G.f.: A(x) = 5 + 32*x + 496*x^2 + 9024*x^3 + 181296*x^4 + 3882848*x^5 + 86887712*x^6 + 2007577472*x^7 + 47530180736*x^8 + ...
-
{a(n) = my(A=[5]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(-4 + 4^2*sum(m=-#A, #A, x^m * (Ser(A) - x^m)^(m-1) ), #A-1););A[n+1]}
for(n=0,30,print1(a(n),", "))
A363315
Expansion of g.f. A(x) satisfying 1/5 = Sum_{n=-oo..+oo} x^n * (A(x) - x^n)^(n-1), with a(0) = 6.
Original entry on oeis.org
6, 50, 950, 21350, 530700, 14067650, 389701050, 11147799700, 326779719500, 9764739197800, 296342706620800, 9108989853295550, 283002934668287000, 8872796279035164100, 280368062326854982450, 8919740526808334086550, 285476263708658548421000, 9185078302539674382641450
Offset: 0
G.f.: A(x) = 6 + 50*x + 950*x^2 + 21350*x^3 + 530700*x^4 + 14067650*x^5 + 389701050*x^6 + 11147799700*x^7 + 326779719500*x^8 + ...
-
{a(n) = my(A=[6]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(-5 + 5^2*sum(m=-#A, #A, x^m * (Ser(A) - x^m)^(m-1) ), #A-1););A[n+1]}
for(n=0,30,print1(a(n),", "))
A363141
Expansion of g.f. A(x) satisfying 1/x = Sum_{n=-oo..+oo} x^n * (A(x) - x^n)^(n-1), with a(0) = 1, a(1) = 1.
Original entry on oeis.org
1, 1, 0, 2, 3, 11, 23, 76, 188, 575, 1587, 4732, 13714, 40993, 121787, 367100, 1107371, 3367412, 10267404, 31468401, 96734992, 298488537, 923587457, 2866241029, 8916951360, 27808418089, 86910042122, 272180834822, 854004007736, 2684311988984, 8451232727631
Offset: 0
G.f.: A(x) = 1 + x + 2*x^3 + 3*x^4 + 11*x^5 + 23*x^6 + 76*x^7 + 188*x^8 + 575*x^9 + 1587*x^10 + 4732*x^11 + 13714*x^12 + ...
-
{a(n) = my(A=[1,1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(-1 + x*sum(m=-#A, #A, x^m * (Ser(A) - x^m)^(m-1) ), #A-2); ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
Showing 1-5 of 5 results.
Comments