A363237 Number of partitions of n with rank a multiple of 5.
1, 0, 1, 1, 1, 3, 3, 4, 6, 8, 12, 15, 21, 27, 34, 47, 59, 77, 98, 125, 160, 200, 251, 315, 390, 488, 602, 744, 913, 1120, 1370, 1669, 2029, 2462, 2975, 3597, 4327, 5203, 6237, 7466, 8919, 10634, 12653, 15035, 17824, 21114, 24950, 29455, 34705, 40844, 47991, 56317, 65987, 77231, 90252
Offset: 1
Keywords
Programs
-
Maple
b:= proc(n, i, c) option remember; `if`(i>n, 0, `if`(i=n, `if`(irem(i-c, 5)=0, 1, 0), b(n-i, i, c+1)+b(n, i+1, c))) end: a:= n-> b(n, 1$2): seq(a(n), n=1..55); # Alois P. Heinz, May 23 2023
-
PARI
my(N=60, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)*(1+x^(5*k))/(1-x^(5*k))))
Formula
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k) * (1+x^(5*k)) / (1-x^(5*k)).