cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363241 Number of partitions of n with prime rank.

Original entry on oeis.org

0, 0, 1, 1, 1, 3, 3, 6, 6, 10, 12, 19, 22, 33, 38, 54, 65, 91, 106, 145, 173, 228, 274, 356, 424, 545, 652, 823, 986, 1232, 1468, 1822, 2172, 2665, 3173, 3869, 4590, 5568, 6591, 7938, 9386, 11249, 13256, 15821, 18608, 22100, 25941, 30695, 35933, 42373, 49501, 58160, 67814, 79434, 92396, 107932
Offset: 1

Views

Author

Seiichi Manyama, May 23 2023

Keywords

Examples

			a(6) = 3 counts these partitions: 6, 5+1, 4+2.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(i>n, 0, `if`(i=n,
         `if`(isprime(i-c), 1, 0), b(n-i, i, c+1)+b(n, i+1, c)))
        end:
    a:= n-> b(n, 1$2):
    seq(a(n), n=1..56);  # Alois P. Heinz, May 23 2023
  • Mathematica
    b[n_, i_, c_] := b[n, i, c] = If[i > n, 0, If[i == n, If[i-c > 0 && PrimeQ[i-c], 1, 0], b[n-i, i, c+1] + b[n, i+1, c]]];
    a[n_] := b[n, 1, 1];
    Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Dec 20 2024, after Alois P. Heinz *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0], Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)*sum(j=1, N, isprime(j)*x^(k*j)))))

Formula

G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k) * Sum_{p prime} x^(k*p).
a(n) = Sum_{p prime} A063995(n,p). - Alois P. Heinz, Dec 20 2024