A363241 Number of partitions of n with prime rank.
0, 0, 1, 1, 1, 3, 3, 6, 6, 10, 12, 19, 22, 33, 38, 54, 65, 91, 106, 145, 173, 228, 274, 356, 424, 545, 652, 823, 986, 1232, 1468, 1822, 2172, 2665, 3173, 3869, 4590, 5568, 6591, 7938, 9386, 11249, 13256, 15821, 18608, 22100, 25941, 30695, 35933, 42373, 49501, 58160, 67814, 79434, 92396, 107932
Offset: 1
Examples
a(6) = 3 counts these partitions: 6, 5+1, 4+2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Wikipedia, Rank of a partition
Programs
-
Maple
b:= proc(n, i, c) option remember; `if`(i>n, 0, `if`(i=n, `if`(isprime(i-c), 1, 0), b(n-i, i, c+1)+b(n, i+1, c))) end: a:= n-> b(n, 1$2): seq(a(n), n=1..56); # Alois P. Heinz, May 23 2023
-
Mathematica
b[n_, i_, c_] := b[n, i, c] = If[i > n, 0, If[i == n, If[i-c > 0 && PrimeQ[i-c], 1, 0], b[n-i, i, c+1] + b[n, i+1, c]]]; a[n_] := b[n, 1, 1]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Dec 20 2024, after Alois P. Heinz *)
-
PARI
my(N=60, x='x+O('x^N)); concat([0, 0], Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)*sum(j=1, N, isprime(j)*x^(k*j)))))
Formula
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k) * Sum_{p prime} x^(k*p).
a(n) = Sum_{p prime} A063995(n,p). - Alois P. Heinz, Dec 20 2024