cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363281 Numbers which are the sum of 4 squares of distinct primes.

Original entry on oeis.org

87, 159, 183, 199, 204, 207, 231, 247, 252, 303, 319, 324, 327, 343, 348, 351, 364, 367, 372, 399, 423, 439, 444, 463, 468, 471, 484, 487, 492, 495, 511, 516, 532, 535, 540, 543, 556, 559, 564, 567, 583, 588, 591, 604, 607, 612, 628, 655, 660, 663, 676, 679, 684, 700, 703, 708
Offset: 1

Views

Author

Zhining Yang, May 25 2023

Keywords

Examples

			87 is a term as 87 = 2^2 + 3^2 + 5^2 + 7^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@1000,
     Length[PowersRepresentations[#, 4, 2] // Select[AllTrue@PrimeQ] //
         Select[DuplicateFreeQ]] > 0 &]
  • PARI
    upto(n) = {if(n <= 86, return([])); my(pr = primes(primepi(sqrtint(n - 38))), res = List()); forvec(v = vector(4, i, [1, #pr]), c = sum(i = 1, #v, pr[v[i]]^2); if(c <= n, listput(res, c)), 2); listsort(res, 1); res} \\ David A. Corneth, Jul 12 2023
  • Python
    from itertools import combinations as comb
    ps=[p**2 for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]]
    a=[n for n in range(1001) if n in [sum(n) for n in list(comb(ps,4))]]
    print(a)