A363281 Numbers which are the sum of 4 squares of distinct primes.
87, 159, 183, 199, 204, 207, 231, 247, 252, 303, 319, 324, 327, 343, 348, 351, 364, 367, 372, 399, 423, 439, 444, 463, 468, 471, 484, 487, 492, 495, 511, 516, 532, 535, 540, 543, 556, 559, 564, 567, 583, 588, 591, 604, 607, 612, 628, 655, 660, 663, 676, 679, 684, 700, 703, 708
Offset: 1
Examples
87 is a term as 87 = 2^2 + 3^2 + 5^2 + 7^2.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range@1000, Length[PowersRepresentations[#, 4, 2] // Select[AllTrue@PrimeQ] // Select[DuplicateFreeQ]] > 0 &]
-
PARI
upto(n) = {if(n <= 86, return([])); my(pr = primes(primepi(sqrtint(n - 38))), res = List()); forvec(v = vector(4, i, [1, #pr]), c = sum(i = 1, #v, pr[v[i]]^2); if(c <= n, listput(res, c)), 2); listsort(res, 1); res} \\ David A. Corneth, Jul 12 2023
-
Python
from itertools import combinations as comb ps=[p**2 for p in [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]] a=[n for n in range(1001) if n in [sum(n) for n in list(comb(ps,4))]] print(a)