cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363376 Determinant of the n X n matrix formed by placing 1..n^2 in L-shaped gnomons in alternating directions.

Original entry on oeis.org

1, -5, 78, -1200, 19680, -351360, 6854400, -145797120, 3367526400, -84072038400, 2258332876800, -64990937088000, 1995834890649600, -65167516237824000, 2254974602969088000, -82443156980760576000, 3176032637949050880000, -128603097714237898752000, 5460911310769351557120000
Offset: 1

Views

Author

Nicolay Avilov, May 29 2023

Keywords

Comments

The matrix is the upper-left n X n part of the square arrangement in A081344.
Number i is in the matrix at row A220604(i) column A220603(i), for i = 1..n^2.
Conjecture: a(n) has trailing zeros for n > 3. - Stefano Spezia, May 31 2023
The conjecture is true and its proof follows easily from Detlef Meya's formula. - Stefano Spezia, Apr 20 2024

Examples

			         |  1----2    9---10   25 |
         |       |    |    |    | |
         |  4----3    8   11   24 |
         |  |         |    |    | |
  a(5) = |  5----6----7   12   23 | = 19680.
         |                 |    | |
         | 16---15---14---13   22 |
         |  |                   | |
         | 17---18---19---20---21 |
		

Crossrefs

Cf. A081344, A220603, A220604, A363460 (permanent).

Programs

  • Mathematica
    a={}; For[n=1, n<=19, n++,k=i=j=1; M[i,j]=k++; For[h=1, hStefano Spezia, May 31 2023 *)
    a={1};For[n=2,n<20,n++,AppendTo[a,(-1)^(n-1)*2^(n-3)*(2*n*(n-1)+1)*n!]];a (* Detlef Meya, Jun 11 2023 *)

Formula

a(1) = 1, for a > 1: a(n) = (-1)^(n-1)*2^(n-3)*(2*n*(n-1)+1)*(n!). - Detlef Meya, Jun 11 2023
E.g.f.: x*(2 + 7*x + 20*x^2 + 12*x^3)/(2*(1 + 2*x)^3). - Stefano Spezia, Apr 20 2024

Extensions

a(16)-a(19) from Stefano Spezia, May 31 2023