A363376 Determinant of the n X n matrix formed by placing 1..n^2 in L-shaped gnomons in alternating directions.
1, -5, 78, -1200, 19680, -351360, 6854400, -145797120, 3367526400, -84072038400, 2258332876800, -64990937088000, 1995834890649600, -65167516237824000, 2254974602969088000, -82443156980760576000, 3176032637949050880000, -128603097714237898752000, 5460911310769351557120000
Offset: 1
Keywords
Examples
| 1----2 9---10 25 | | | | | | | | 4----3 8 11 24 | | | | | | | a(5) = | 5----6----7 12 23 | = 19680. | | | | | 16---15---14---13 22 | | | | | | 17---18---19---20---21 |
Links
- Stefano Spezia, Table of n, a(n) for n = 1..400
- Nicolay Avilov, Illustration of a(1)-a(5)
Programs
-
Mathematica
a={}; For[n=1, n<=19, n++,k=i=j=1; M[i,j]=k++; For[h=1, h
Stefano Spezia, May 31 2023 *) a={1};For[n=2,n<20,n++,AppendTo[a,(-1)^(n-1)*2^(n-3)*(2*n*(n-1)+1)*n!]];a (* Detlef Meya, Jun 11 2023 *)
Formula
a(1) = 1, for a > 1: a(n) = (-1)^(n-1)*2^(n-3)*(2*n*(n-1)+1)*(n!). - Detlef Meya, Jun 11 2023
E.g.f.: x*(2 + 7*x + 20*x^2 + 12*x^3)/(2*(1 + 2*x)^3). - Stefano Spezia, Apr 20 2024
Extensions
a(16)-a(19) from Stefano Spezia, May 31 2023
Comments