A363399 Triangle read by rows. T(n, k) = [x^k] P(n, x), where P(n, x) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} (x^j * binomial(k, j) * (j + 1)^n), (tangent case).
1, 3, 2, 7, 16, 9, 15, 88, 135, 64, 31, 416, 1296, 1536, 625, 63, 1824, 10206, 22528, 21875, 7776, 127, 7680, 72171, 262144, 453125, 373248, 117649, 255, 31616, 478953, 2670592, 7265625, 10357632, 7411887, 2097152, 511, 128512, 3057426, 25034752, 100000000, 218350080, 265180846, 167772160, 43046721
Offset: 0
Examples
The triangle T(n, k) begins: [0] 1; [1] 3, 2; [2] 7, 16, 9; [3] 15, 88, 135, 64; [4] 31, 416, 1296, 1536, 625; [5] 63, 1824, 10206, 22528, 21875, 7776; [6] 127, 7680, 72171, 262144, 453125, 373248, 117649; [7] 255, 31616, 478953, 2670592, 7265625, 10357632, 7411887, 2097152;
Crossrefs
Programs
-
Maple
P := (n, x) -> add(add(x^j*binomial(k, j)*(j + 1)^n, j=0..k)*2^(n - k), k = 0..n): T := (n, k) -> coeff(P(n, x), x, k): seq(seq(T(n, k), k = 0..n), n = 0..8);
-
Mathematica
(* From Detlef Meya, Oct 04 2023: (Start) *) T[n_, k_] := (k+1)^n*(2^(n+1)-Sum[Binomial[n+1, j], {j, 0, k}]); (* Or *) T[n_, k_] := (k+1)^n*Binomial[n+1, k+1]*Hypergeometric2F1[1, k-n, k+2, -1]; Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]] (* End *)
Formula
Sum_{k=0..n} (-1)^k * T(n, k) = 2^n*Euler(n, 1) = (-2)^n*Euler(n, 0) = A155585(n).
From Detlef Meya, Oct 04 2023: (Start)
T(n, k) = (k + 1)^n*binomial(n + 1, k + 1)*hypergeom([1, k - n], [k + 2], -1).
T(n, k) = (k + 1)^n * (2^(n + 1) - add(binomial(n + 1, j), j=0..k)). (End)
Comments