A363433 Number of (123,231)-avoiding stabilized-interval-free permutations of size n.
1, 1, 1, 1, 1, 2, 3, 3, 5, 5, 7, 7, 10, 9, 13, 12, 16, 15, 20, 18, 24, 22, 28, 26, 33, 30, 38, 35, 43, 40, 49, 45, 55, 51, 61, 57, 68, 63, 75, 70, 82, 77, 90, 84, 98, 92, 106, 100, 115, 108, 124, 117, 133, 126, 143, 135, 153, 145, 163, 155, 174, 165, 185, 176, 196
Offset: 0
Examples
For n from 1 to 5 the six permutations (1+1+1+1+2) are 1, 21, 312, 4312, 54132, 54213.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Daniel Birmajer, Juan B. Gil, Jordan O. Tirrell, and Michael D. Weiner, Pattern-avoiding stabilized-interval-free permutations, arXiv:2306.03155 [math.CO], 2023.
- Index entries for linear recurrences with constant coefficients, signature (0,2,1,-1,-2,0,1).
Programs
-
Maple
A131713 := proc(n) op(1+modp(n,3),[1,-2,1]) ; end proc: A363433 := proc(n) if n < 3 then 1; else 16*A131713(n) +42*n-79+6*n^2-81*(-1)^n+18*n*(-1)^n; %/144 ; end if; end proc: seq(A363433(n),n=0..20) ; # R. J. Mathar, Jul 17 2023
-
Mathematica
LinearRecurrence[{0,2,1,-1,-2,0,1},{1,1,1,1,1,2,3,3,5,5},100] (* Paolo Xausa, Nov 18 2023 *)
-
PARI
Vec((x^9 + x^8 - 3*x^6 - 2*x^5 + x^4 + 2*x^3 + x^2 - x - 1)/((x^2 + x + 1)*(x + 1)^2*(x - 1)^3) + O(x^65)) \\ Michel Marcus, Jul 01 2023
Formula
G.f.: (x^9 + x^8 - 3*x^6 - 2*x^5 + x^4 + 2*x^3 + x^2 - x - 1)/((x^2 + x + 1)*(x + 1)^2*(x - 1)^3).
E.g.f.: (144 + 36*x*(2 + x) + (3*x^2 + 15*x - 80)*cosh(x) + 8*exp(-x/2)*(cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)) + (3*x^2 + 33*x + 1)*sinh(x))/72. - Stefano Spezia, Jul 01 2023
144*a(n) = 16*A131713(n) +42*n -79 +6*n^2 -81*(-1)^n +18*n*(-1)^n , for n>=3. - R. J. Mathar, Jul 17 2023
Comments