A363463 a(n) is the smallest number k with exactly n of its divisors in A052294.
1, 3, 6, 12, 18, 48, 36, 192, 72, 84, 144, 3072, 168, 5985, 576, 336, 504, 26505, 672, 45045, 840, 1344, 6510, 129675, 2016, 1680, 11970, 4620, 4032, 389025, 3360, 888615, 6552, 13020, 53010, 6720, 8736, 855855, 90090, 23940, 13104, 2411955, 17472, 2417415, 26040
Offset: 0
Examples
a(0) = 1 because 1 has no divisors in A052294. 2 has no divisors in A052294 and 3 has only one divisor 3 = 11_2 in A052294, so a(1) = 3. 4 has no divisors in A052294, 5 has only the divisor 5 = 101_2 in A052294, 6 has divisors 3 = 11_2 and 6 = 110_2, so a(2) = 6.
Crossrefs
Cf. A052294.
Programs
-
Magma
fp:=func
; a:=[]; for n in [0..44] do k:= 1; while #[d:d in Divisors(k)|fp(d)] ne n do k:=k+1; end while; Append(~a,k); end for; a; -
Mathematica
seq[len_, kmax_] := Module[{s = Table[0, {len}], c = 0, k = 1, ind}, While[k < kmax && c < len, ind = DivisorSum[k, 1 &, PrimeQ[DigitCount[#, 2, 1]] &] + 1; If[ind <= len && s[[ind]] == 0, c++; s[[ind]] = k]; k++]; s]; seq[40, 10^6] (* Amiram Eldar, Jul 10 2023 *)
-
PARI
a(n) = my(k=1); while (sumdiv(k, d, isprime(hammingweight(d))) != n, k++); k; \\ Michel Marcus, Jul 10 2023