A363582 Number of admissible mesa sets among Stirling permutations of order n.
1, 2, 3, 6, 12, 22, 44, 88, 169, 338, 676, 1322, 2644, 5288, 10433, 20866, 41732, 82736, 165472, 330944, 658012, 1316024, 2632048, 5242778, 10485556, 20971112, 41822049, 83644098, 167288196, 333885702, 667771404, 1335542808, 2667053601, 5334107202, 10668214404
Offset: 1
Keywords
Examples
For n = 4, the a(4) = 6 admissible pinnacle sets for Stirling permutations of order 4 are {}, {2}, {3}, {4}, {2,4}, and {3,4}.
References
- Nicolle González, Pamela E. Harris, Gordon Rojas Kirby, Mariana Smit Vega Garcia, and Bridget Eileen Tenner, "Mesas of Stirling permutations," preprint.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..3323
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, n, (2*n*(2*n-3)* a(n-1)+27*(n-4)*(n-2)*(a(n-3)/2-a(n-4)))/(n*(2*n-3))) end: seq(a(n), n=1..45); # Alois P. Heinz, Jun 13 2023
Formula
Extensions
More terms from Alois P. Heinz, Jun 13 2023