cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A363639 Expansion of Sum_{k>0} (1/(1 - k*x^k)^3 - 1).

Original entry on oeis.org

3, 12, 19, 51, 36, 180, 57, 405, 352, 918, 111, 3990, 144, 5064, 6534, 15945, 222, 51462, 267, 99354, 82478, 160812, 369, 808490, 66051, 861630, 1090342, 2593614, 552, 8966414, 621, 13039761, 13831470, 22415778, 3166218, 114011229, 852, 110103540, 167426822
Offset: 1

Views

Author

Seiichi Manyama, Jun 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (n/#)^# * Binomial[# + 2, 2] &]; Array[a, 40] (* Amiram Eldar, Jul 17 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d)^d*binomial(d+2, 2));

Formula

a(n) = Sum_{d|n} (n/d)^d * binomial(d+2,2).

A366984 a(n) = Sum_{k=1..n} binomial(k+2,2) * floor(n/k).

Original entry on oeis.org

3, 12, 25, 49, 73, 120, 159, 228, 296, 392, 473, 626, 734, 899, 1069, 1291, 1465, 1757, 1970, 2312, 2614, 2977, 3280, 3803, 4178, 4670, 5144, 5759, 6227, 6993, 7524, 8307, 8993, 9803, 10529, 11630, 12374, 13373, 14311, 15559, 16465, 17867, 18860, 20273, 21579, 23016
Offset: 1

Views

Author

Seiichi Manyama, Oct 30 2023

Keywords

Crossrefs

Partial sums of A363628.
Cf. A366967.

Programs

  • PARI
    a(n) = sum(k=1, n, binomial(k+2, 2)*(n\k));
    
  • Python
    from math import isqrt
    def A366984(n): return (-(s:=isqrt(n))*(s*(s*(s+7)+17)+17)+sum(((q:=n//w)+1)*(q*(q+5)+3*(w*(w+3)+4)) for w in range(1,s+1)))//6 # Chai Wah Wu, Oct 31 2023

Formula

G.f.: 1/(1-x) * Sum_{k>0} (1/(1-x^k)^3 - 1) = 1/(1-x) * Sum_{k>0} binomial(k+2,2) * x^k/(1-x^k).

A363660 a(n) = Sum_{d|n} binomial(d+n,n).

Original entry on oeis.org

2, 9, 24, 90, 258, 1043, 3440, 13419, 48850, 187836, 705444, 2725099, 10400614, 40233015, 155133856, 601820876, 2333606238, 9079958260, 35345263820, 137876637843, 538259060526, 2104292500739, 8233430727624, 32248866496625, 126410606580284
Offset: 1

Views

Author

Seiichi Manyama, Jun 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + n, n] &]; Array[a, 25] (* Amiram Eldar, Jul 17 2023 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+n, n));

Formula

a(n) = [x^n] Sum_{k>0} (1/(1 - x^k)^(n+1) - 1).
a(n) = [x^n] Sum_{k>0} binomial(k+n,n) * x^k/(1 - x^k).

A363695 Expansion of Sum_{k>0} (1/(1-x^k)^5 - 1).

Original entry on oeis.org

5, 20, 40, 90, 131, 265, 335, 585, 755, 1147, 1370, 2155, 2385, 3410, 4042, 5430, 5990, 8295, 8860, 11843, 13020, 16335, 17555, 23125, 23882, 29805, 32220, 39440, 40925, 51644, 52365, 64335, 67450, 79820, 82712, 101575, 101275, 120805, 125830, 148089, 149000, 179490
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 4, 4] &]; Array[a, 40] (* Amiram Eldar, Jul 05 2023 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+4, 4));

Formula

G.f.: Sum_{k>0} binomial(k+4,4) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+4,4).

A363696 Expansion of Sum_{k>0} (1/(1-x^k)^6 - 1).

Original entry on oeis.org

6, 27, 62, 153, 258, 545, 798, 1440, 2064, 3282, 4374, 6859, 8574, 12447, 15818, 21789, 26340, 36196, 42510, 56538, 66634, 85125, 98286, 126901, 142764, 178506, 203440, 249909, 278262, 343936, 376998, 457686, 506372, 602118, 659058, 791908, 850674, 1005129, 1094638
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 5, 5] &]; Array[a, 40] (* Amiram Eldar, Jul 05 2023 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+5, 5));

Formula

G.f.: Sum_{k>0} binomial(k+5,5) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+5,5).
Showing 1-5 of 5 results.