A363719 Number of integer partitions of n satisfying (mean) = (median) = (mode), assuming there is a unique mode.
1, 2, 2, 3, 2, 4, 2, 5, 3, 5, 2, 10, 2, 7, 7, 12, 2, 18, 2, 24, 16, 13, 2, 58, 15, 18, 37, 60, 2, 123, 2, 98, 79, 35, 103, 332, 2, 49, 166, 451, 2, 515, 2, 473, 738, 92, 2, 1561, 277, 839, 631, 1234, 2, 2043, 1560, 2867, 1156, 225, 2, 9020
Offset: 1
Keywords
Examples
The a(n) partitions for n = 1, 2, 4, 6, 8, 12, 14, 16 (A..G = 10..16): 1 2 4 6 8 C E G 11 22 33 44 66 77 88 1111 222 2222 444 2222222 4444 111111 3221 3333 3222221 5443 11111111 4332 3322211 6442 5331 4222211 7441 222222 11111111111111 22222222 322221 32222221 422211 33222211 111111111111 42222211 52222111 1^16
Crossrefs
Programs
-
Mathematica
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; Table[Length[Select[IntegerPartitions[n], {Mean[#]}=={Median[#]}==modes[#]&]],{n,30}]
Comments