A363760 Cycle lengths obtained by repeated application of Klaus Nagel's strip bijection, as described in A307110.
1, 8, 9, 10, 40, 72, 106, 218, 256, 408, 424, 872, 1178, 2336, 2522, 2952, 4712, 10088, 13290, 26648, 28906, 33784, 53160, 115624, 150842, 303784, 330138, 385624, 603368, 1320552, 1716170, 3462216, 3765322, 4397144, 6864680, 15061288, 19543834, 39454792, 42921274, 50118936, 78175336, 171685096
Offset: 1
Keywords
Examples
a(1) = 1: p(0, 0) -> [0, 0], p(1, 0) -> [1, 0]. Points mapped onto themselves. a(2) = 8: [0, 1] -> [-1, 1] -> [-2, 0] -> [-1, -1] -> [0, -1] -> [1, -1] -> [2, 0] -> [1, 1] -> [0, 1]. a(3) = 9: [1, 6] -> [-3, 5] -> [-6, 2] -> [-6, -2] -> [-3, -5] -> [1, -6] -> [5, -4] -> [6, 0] -> [5, 4] -> [1, 6]. a(4) = 10: [0, 2] -> [-1, 2] -> [-2, 1] -> [-2, -1] -> [-1, -2] -> [0, -2] -> [1, -2] -> [2, -1] -> [2, 1] -> [1, 2] -> [0, 2]. List of start points and corresponding cycle lengths: y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 x \--------------------------------------------------------------- 0 | 1 8 10 8 8 40 8 8 8 40 8 8 106 8 8 40 8 1 | 1 8 10 8 8 40 9 40 8 8 106 40 106 8 8 40 8 2 | 8 10 8 8 8 8 8 8 8 8 40 106 8 8 8 8 40 3 | 8 8 8 8 40 9 8 8 8 8 8 8 8 106 8 8 8 4 | 8 8 8 40 8 40 8 8 8 8 8 8 8 8 106 8 8 5 | 8 40 8 40 9 8 8 8 8 8 8 8 8 8 106 8 8 6 | 9 40 9 8 8 40 8 40 106 40 106 8 8 8 106 72 8 7 | 8 8 8 8 8 8 8 8 40 106 8 106 8 106 8 8 72 8 |40 8 8 8 8 8 40 106 8 106 8 8 8 8 8 8 8 9 | 8 8 8 8 8 8 106 40 106 8 8 8 8 8 8 8 8 10 | 8 40 106 8 8 8 8 8 8 8 8 40 8 40 8 8 72 11 |40 106 40 8 8 8 8 106 8 8 40 8 8 8 40 72 8 12 | 8 106 8 106 8 8 8 106 8 8 40 8 8 8 40 8 8 13 | 8 8 8 106 8 8 8 106 8 8 40 8 8 8 40 8 8 14 | 8 8 8 8 106 8 106 8 8 8 8 40 8 40 8 8 8 15 | 8 40 8 8 8 8 8 72 8 8 72 8 8 8 8 8 40 16 | 8 8 40 8 8 8 72 8 8 8 8 72 8 8 8 40 8 . a(9) = 256: See links to animated visualizations.
Links
- Hugo Pfoertner, Animated visualization of cycle with L=256, all visited points shown.
- Hugo Pfoertner, Animated visualization of cycle with L=256, every 8th visited point shown.
- Hugo Pfoertner, Visualization of all terms from L=40 to L=53160. Zoom in to see details.
- Hugo Pfoertner, Illustration of a(24) = 115624.
- Hugo Pfoertner, Illustration of a(25) = 150842.
- Hugo Pfoertner, Illustration of a(26) = 303784.
- Hugo Pfoertner, Illustration of a(27) = 330138.
- Hugo Pfoertner, Illustration of a(28) = 385624.
- Hugo Pfoertner, Illustration of a(29) = 603368.
- Hugo Pfoertner, Illustrations of a cycle of length 6508768664, including zoom images of the self-similar path details, December 2023.
- Hugo Pfoertner, Examples of starting points for all known cycle lengths, July 2023.
Crossrefs
Programs
-
PARI
C=cos(Pi/8); S=sin(Pi/8); T=S/C; \\ Global constants \\ The mapping function p \\ PARI's default precision of 38 digits is sufficient up to abs({x,y})<10^17 p(i,j) = {my (gx=i*C-j*S, gy=i*S+j*C,k, xm, ym, v=[0,0]); k=round(gy/C); ym=C*k;xm=gx+(gy-ym)*T; v[1]=round((xm-ym*T)*C); v[2]=round((ym+v[1]*S)/C); v}; \\ cycle length cycle(v) = {my (n=1, w=p(v[1],v[2])); while (w!=v, n++; w=p(w[1],w[2])); n}; a363760 (rmax) = {my (L=List()); for (x=0, rmax, for(y=x, rmax, my(c=cycle([x,y])); if(setsearch(L,c)==0, listput(L,c); listsort(L,1)))); L}; a363760(500) \\ takes a few minutes, terms up to a(19), check completeness of list with larger rmax
Comments