A307110 Index of matching grid point in the bijection between two infinite quadratic grids with one grid rotated by Pi/4 around the common point (0,0), using an enumeration of the grid points by A305575 and A305576.
0, 1, 6, 3, 8, 2, 11, 4, 9, 5, 15, 7, 19, 14, 10, 16, 17, 18, 12, 20, 13, 26, 27, 28, 25, 21, 22, 23, 24, 38, 31, 40, 33, 42, 35, 44, 29, 30, 51, 32, 53, 34, 55, 36, 49, 57, 58, 59, 60, 62, 39, 64, 41, 66, 43, 68, 37, 46, 47, 48, 45, 50, 63, 52, 65, 54, 67
Offset: 0
Keywords
Examples
The following table shows the first few matched pairs of grid points: Grid G Grid H Grid H rotated n i j a(n) k m (k,m) rotated by -Pi/4 distance of matched points 0 0 0 0 0 0 0.000000 0.000000 0.000000 1 1 0 1 1 0 0.707107 -0.707107 0.765367 2 0 1 6 -1 1 0.000000 1.414214 0.414214 3 -1 0 3 -1 0 -0.707107 0.707107 0.765367 4 0 -1 8 1 -1 0.000000 -1.414214 0.414214 5 1 1 2 0 1 0.707107 0.707107 0.414214 6 -1 1 11 -2 0 -1.414214 1.414214 0.585786 7 -1 -1 4 0 -1 -0.707107 -0.707107 0.414214 8 1 -1 9 2 0 1.414214 -1.414214 0.585786 9 2 0 5 1 1 1.414214 0.000000 0.585786 10 0 2 15 -1 2 0.707107 2.121320 0.717439 11 -2 0 7 -1 -1 -1.414214 0.000000 0.585786 12 0 -2 19 1 -2 -0.707107 -2.121320 0.717439 13 2 1 14 1 2 2.121320 0.707107 0.317025
Links
- Hugo Pfoertner and Rainer Rosenthal, Table of n, a(n) for n = 0..10000
- H. Carstens, W. Deuber, W. Thumser, and E. Koppenrade, Geometrical Bijections in Discrete Lattices. Combinatorics, Probability and Computing, 8(1-2), 109-129, 1999.
- Klaus Nagel, Zwei Gitter, thread in newsgroup de.sci.mathematik, description of bijection (in German), Jan 7 2007.
- Klaus Nagel, Zwei Gitter, thread in newsgroup de.sci.mathematik, modification of strip location (in German), Jan 14 2007.
- Hugo Pfoertner, Illustration of strip bijection, (2019).
- Rainer Rosenthal, Illustrating examples a(0) ... a(29), Nov 29 2023.
Programs
-
PARI
/* It is assumed that the files a305575 and a305576 contain the second column of the corresponding b-files */ a305575=readvec(a305575); a305576=readvec(a305576); p(i,j)={my(C=cos(Pi/8),S=sin(Pi/8),T=S/C,gx=i*C-j*S,gy=i*S+j*C,k,xm,ym,v=[0,0]); k=round(gy/C); ym=C*k; xm=gx+(gy-ym)*T; v[1]=round((xm-ym*T)*C); v[2]=round((ym+v[1]*S)/C); v} findpos(v)={for(k=1,#a305575,if(v[1]==a305575[k]&&v[2]==a305576[k],return(k-1)))} for(n=1,67,print1(findpos(p(a305575[n],a305576[n])),", "))
Comments