A363763 a(n) is the least k such that there are exactly n distinct numbers j that can be expressed as the sum of two squares with k^2 < j < (k+1)^2, or -1 if such a k does not exist.
0, 1, 2, 4, 5, 7, 8, 10, 13, 12, 15, 17, 19, 23, 21, 24, 25, 28, 32, 31, 34, 37, 39, 44, 41, 43, 45, 50, 51, 48, 57, 55, 56, 59, 64, 63, 68, 69, 74, 77, 78, 75, 72, 80, 88, 84, -1, 94, 89, 96, 93, 99, 97, 102, 108, -1, 106, 111, 110, 113, 117, 120, -1, 123, 133, 127, 130, 137, 142, 138, 139, -1, 135
Offset: 0
Keywords
Examples
From _Rainer Rosenthal_, Jul 09 2023: (Start) a(5) = 7, since A077773(7) = 5 and A077773(n) != 5 for n < 7. a(46) = -1, since a(46) < ((46+1)^2)/2 < 1105 and A077773(k) != 46 for all k < 1105. See illustrations in the links section. (End)
Links
- Hugo Pfoertner, PARI program for calculating a single term, Jul 2023.
- Rainer Rosenthal, Illustrating a(5) = 7.
- Rainer Rosenthal, First terms of A363763 illustrated.
Crossrefs
Programs
-
PARI
\\ a4018(n) after Michael Somos a4018(n) = if( n<1, n==0, 4 * sumdiv( n, d, (d%4==1) - (d%4==3))); a363763 (upto) = {for (n=0, upto, my(kfound=-1); for (k=0, (n+1)^2\2+1, my(kp=k^2+1, km=(k+1)^2-1, m=0); for (j=kp, km, if (a4018(j), m++); if (m>n, break)); if (m==n, kfound=k; break)); print1 (kfound,", ");)}; a363763(75)
-
Python
from sympy import factorint def A363763(n): for k in range(n>>1,((n+1)**2<<1)+1): c = 0 for m in range(k**2+1,(k+1)**2): if all(p==2 or p&3==1 or e&1^1 for p, e in factorint(m).items()): c += 1 if c>n: break if c==n: return k return -1 # Chai Wah Wu, Jun 20-26 2023
Formula
If a(n) != -1, then a(n) >= n/2. - Chai Wah Wu, Jun 22 2023
a(n) < (n+1)^2/2. - Jon E. Schoenfield and Chai Wah Wu, Jun 24-26 2023
Comments