A363867 a(n) = A108625(n,2*n).
1, 5, 61, 923, 15421, 272755, 5006275, 94307855, 1811113021, 35301145037, 696227550811, 13863654392945, 278264498108611, 5622746346645953, 114268249446672151, 2333733620675302423, 47868774493665731645, 985608360056821004233, 20362035153323824192645
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
Programs
-
Magma
A363867:= func< n | (&+[Binomial(n,j)^2*Binomial(2*n+j,n): j in [0..n]]) >; [A363867(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
-
Maple
A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1): seq(simplify(A108625(n, 2*n)), n = 0..18);
-
Mathematica
Table[HypergeometricPFQ[{-n,-2*n,n+1}, {1,1}, 1], {n,0,30}] (* G. C. Greubel, Oct 05 2023 *)
-
SageMath
def A363867(n): return sum(binomial(n,j)^2*binomial(2*n+j,n) for j in range(n+1)) [A363867(n) for n in range(31)] # G. C. Greubel, Oct 05 2023
Formula
a(n) = Sum_{k = 0..n} binomial(n, k)^2 * binomial(2*n+k, n).
a(n) = Sum_{k = 0..n} (-1)^(n+k)* binomial(n, k)*binomial(2*n+k, n)^2.
a(n) = hypergeom( [-n, -2*n, n+1], [1, 1], 1).
a(n) = [x^(2*n)] 1/(1 - x)*Legendre_P(n, (1 + x)/(1 - x)).
P-recursive: 4*(2*n - 1)^2*n^2*(85*n^2 - 235*n + 163)*a(n) = (29665*n^6 - 141345*n^5 + 264772*n^4 - 249181*n^3 + 124975*n^2 - 31902*n + 3276)*a(n-1) + 4*(2*n - 3)^2*(n-1)^2*(85*n^2 - 65*n + 13)*a(n-2) with a(0) = 1 and a(1) = 5.
a(n) = Sum_{k = 0..n} binomial(n, k)*binomial(n+k, k)*binomial(2*n, k). - Peter Bala, Feb 25 2024
a(n) ~ sqrt(13 + 53/sqrt(17)) * (349 + 85*sqrt(17))^n / (Pi * n * 2^(5*n + 5/2)). - Vaclav Kotesovec, Apr 26 2024
Comments