cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A291534 Expansion of the series reversion of x/((1 + x)*(1 - x^2)).

Original entry on oeis.org

1, 1, 0, -3, -7, -4, 24, 85, 99, -215, -1196, -2100, 1420, 17512, 42160, 9477, -252073, -815965, -736456, 3365813, 15248793, 22861712, -37036000, -273657748, -575046252, 180950476, 4658415696, 13042693000, 6717278152, -73400374512, -275797704864, -321427878811, 1012425395135
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 25 2017

Keywords

Comments

Reversion of g.f. for the canonical enumeration of integers (A001057).

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x/((1 + x) (1 - x^2)), {x, 0, 33}], x], x]]
    Table[HypergeometricPFQ[{(1 - n)/2, 1 - n/2, -n}, {1, 3/2}, 1], {n, 1, 33}] (* Vladimir Reshetnikov, Oct 15 2018 *)
  • PARI
    a(n) = sum(k=0, n-1, (-1)^k*binomial(n, k)*binomial(2*n, n-1-k))/n; \\ Seiichi Manyama, Aug 05 2023

Formula

G.f. A(x) satisfies: A(x)/((1 + A(x))*(1 - A(x)^2)) = x.
a(n) = hypergeom([(1 - n)/2, 1 - n/2, -n], [1, 3/2], 1). - Vladimir Reshetnikov, Oct 15 2018
From Vladimir Reshetnikov, Oct 18 2018: (Start)
G.f.: 2^(1/3)*(6 - 8*x - 2^(1/3)*t^2)/(6*sqrt(x)*t), where t = (3*sqrt(12 - 39*x + 96*x^2) - (9 + 16*x)*sqrt(x))^(1/3).
D-finite with recurrence: 64*n*(n + 1)*(2*n + 1)*a(n) - 4*(n + 1)*(37*n^2 + 134*n + 120)*a(n + 1) + (n + 2)*(55*n^2 + 235*n + 240)*a(n + 2) - 2*(6*n + 21)*(n + 2)*(n + 3)*a(n + 3) = 0. (End)
a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(2*n,n-1-k). - Seiichi Manyama, Aug 05 2023
From Seiichi Manyama, Aug 11 2023: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(n,k) * binomial(2*n+k+1,n) / (2*n+k+1).
a(n) = (1/n) * Sum_{k=0..n-1} (-2)^k * binomial(n,k) * binomial(3*n-k,n-1-k). (End)

A363982 G.f. satisfies A(x) = 1 + x*A(x)^2 / (1 + x*A(x)^3).

Original entry on oeis.org

1, 1, 1, -1, -8, -16, 16, 195, 491, -317, -6293, -18608, 4610, 230385, 780625, 107615, -9028280, -34695607, -17401607, 367885509, 1598468196, 1350497961, -15317000747, -75391402496, -88375867528, 643505487144, 3611942077216, 5376931884971
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, (-1)^k*binomial(n, k)*binomial(2*n+k, n-1-k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(2*n+k,n-1-k) for n > 0.

A364764 G.f. satisfies A(x) = 1 + x*A(x)^2 / (1 + x*A(x)^4).

Original entry on oeis.org

1, 1, 1, -2, -14, -27, 70, 625, 1457, -3541, -37403, -98547, 207098, 2564079, 7448923, -12940485, -190014459, -600991549, 827159379, 14802832468, 50584687754, -52159768068, -1193457862093, -4384199208207, 3090291576246, 98618925147291, 388126462227091
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, (-1)^k*binomial(n, k)*binomial(2*n+2*k, n-1-k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(2*n+2*k,n-1-k) for n > 0.
Showing 1-3 of 3 results.