A364142 Sophie Germain primes p such that both p and the corresponding safe prime 2*p+1 have distinct digits.
2, 3, 23, 29, 41, 53, 83, 89, 173, 179, 239, 251, 281, 293, 359, 419, 431, 491, 641, 653, 683, 719, 743, 761, 953, 1289, 1409, 1439, 1583, 1973, 2039, 2063, 2069, 2351, 2543, 2693, 2741, 2819, 2903, 2963, 3491, 3761, 3821, 4019, 4073, 4271, 4793, 4871, 5231, 6173, 6329, 6491, 6983, 7043, 7103
Offset: 1
Examples
a(4) = 29 is a term because 29 and 2*29 + 1 = 59 are both primes and both have distinct digits.
Links
- Robert Israel, Table of n, a(n) for n = 1..1514
Programs
-
Maple
filter:= proc(p) local L; L:= convert(p,base,10); if nops(L) <> nops(convert(L,set)) or not isprime(2*p+1) then return false fi; L:= convert(2*p+1,base,10); nops(L) = nops(convert(L,set)) end proc: select(filter, [seq(ithprime(i),i=1..1000)]);
-
Mathematica
s = {p = 2}; Do[p = NextPrime[p]; While[! PrimeQ[q = 2*p + 1] || 1< Max[DigitCount[q]] || 1 < Max[DigitCount[p]], p = NextPrime[p]]; AppendTo[s, p], {1515}]; s
Comments