A364145 a(n) is the sum of the first 2*n nonzero n-bonacci numbers.
0, 2, 7, 28, 116, 480, 1968, 8000, 32320, 130048, 521984, 2092032, 8377344, 33529856, 134164480, 536756224, 2147237888, 8589410304, 34358624256, 137436594176, 549750833152, 2199012769792, 8796071002112, 35184325951488, 140737391886336, 562949752094720
Offset: 0
Examples
For n=3, a(3) is the sum of the first 6 nonzero tribonacci numbers, found at A000073. This gives a(3) = 1 + 1 + 2 + 4 + 7 + 13 = 28.
Links
- Index entries for linear recurrences with constant coefficients, signature (8,-20,16).
Programs
-
Mathematica
T[n_, k_] := SeriesCoefficient[Series[x/(1 - Sum[x^i, {i, 1, n}]), {x, 0, k + 1}], k]; Table[Sum[T[n, k], {k, 1, 2n}], {n, 1, 30}]
Formula
a(n) = (2*4^n - (n-1)*2^n)/4 for n>=1.
a(n) = Sum_{i=1..2*n} A092921(n,i).
G.f.: -x*(12*x^2-9*x+2)/((4*x-1)*(2*x-1)^2). - Alois P. Heinz, Jul 11 2023
E.g.f.: exp(2*x)*(1 - 2*x - cosh(2*x) + 5*sinh(2*x))/4. - Stefano Spezia, Jul 12 2023
Comments