A364167 Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^3 * (1 + A(x)^3).
1, 2, 18, 234, 3570, 59586, 1053570, 19392490, 367677090, 7131417282, 140834140722, 2822214963882, 57243994984722, 1172991472484610, 24245748916730658, 504935751379031082, 10584721220759172162, 223163804001804187266, 4729176407109705542994, 100676187744957784842090
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..737 (first 50 terms from Christian N. Hofmann)
Programs
-
Maple
a:= n-> sum(binomial(n, k)*binomial(3*n+3*k+1, n)/(3*n+3*k+1), k=0..n): seq(a(n), n=0..49); # Christian N. Hofmann, Jul 14 2023
-
PARI
a(n) = sum(k=0, n, binomial(n, k)*binomial(3*n+3*k+1, n)/(3*n+3*k+1));
Formula
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(3*n+3*k+1,n)/(3*n+3*k+1).