cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364233 Triangle read by rows: T(n, k) is the number of n X n symmetric Toeplitz matrices of rank k using all the first n prime numbers integers.

Original entry on oeis.org

1, 0, 2, 0, 0, 6, 0, 0, 0, 24, 0, 0, 0, 0, 120, 0, 0, 0, 0, 2, 718, 0, 0, 0, 0, 0, 4, 5036, 0, 0, 0, 0, 0, 1, 3, 40316, 0, 0, 0, 0, 0, 0, 0, 18, 362862, 0, 0, 0, 0, 0, 0, 0, 0, 14, 3628786, 0, 0, 0, 0, 0, 0, 0, 0, 0, 99, 39916701, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 78, 479001517
Offset: 1

Views

Author

Stefano Spezia, Jul 14 2023

Keywords

Examples

			The triangle begins:
  1;
  0, 2;
  0, 0, 6;
  0, 0, 0, 24;
  0, 0, 0,  0, 120;
  0, 0, 0,  0,   2, 718;
  0, 0, 0,  0,   0,   4, 5036;
  ...
		

Crossrefs

Cf. A000142 (row sums), A348891 (minimal nonzero absolute value determinant), A350955 (minimal determinant), A350956 (maximal determinant), A351021 (minimal permanent), A351022 (maximal permanent), A364234 (right diagonal).

Programs

  • Mathematica
    T[n_,k_]:= Count[Table[MatrixRank[ToeplitzMatrix[Part[Permutations[Prime[Range[n]]], i]]],{i,n!}],k]; Table[T[n,k],{n,8},{k,n}]//Flatten
  • PARI
    MkMat(v)={matrix(#v, #v, i, j, v[1+abs(i-j)])}
    row(n)={my(f=vector(n)); forperm(vector(n,i,prime(i)), v, f[matrank(MkMat(v))]++); f} \\ Andrew Howroyd, Dec 31 2023

Extensions

Terms a(46) and beyond from Andrew Howroyd, Dec 31 2023