A364233 Triangle read by rows: T(n, k) is the number of n X n symmetric Toeplitz matrices of rank k using all the first n prime numbers integers.
1, 0, 2, 0, 0, 6, 0, 0, 0, 24, 0, 0, 0, 0, 120, 0, 0, 0, 0, 2, 718, 0, 0, 0, 0, 0, 4, 5036, 0, 0, 0, 0, 0, 1, 3, 40316, 0, 0, 0, 0, 0, 0, 0, 18, 362862, 0, 0, 0, 0, 0, 0, 0, 0, 14, 3628786, 0, 0, 0, 0, 0, 0, 0, 0, 0, 99, 39916701, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 78, 479001517
Offset: 1
Examples
The triangle begins: 1; 0, 2; 0, 0, 6; 0, 0, 0, 24; 0, 0, 0, 0, 120; 0, 0, 0, 0, 2, 718; 0, 0, 0, 0, 0, 4, 5036; ...
Links
- Wikipedia, Toeplitz Matrix
Crossrefs
Programs
-
Mathematica
T[n_,k_]:= Count[Table[MatrixRank[ToeplitzMatrix[Part[Permutations[Prime[Range[n]]], i]]],{i,n!}],k]; Table[T[n,k],{n,8},{k,n}]//Flatten
-
PARI
MkMat(v)={matrix(#v, #v, i, j, v[1+abs(i-j)])} row(n)={my(f=vector(n)); forperm(vector(n,i,prime(i)), v, f[matrank(MkMat(v))]++); f} \\ Andrew Howroyd, Dec 31 2023
Extensions
Terms a(46) and beyond from Andrew Howroyd, Dec 31 2023