cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364395 G.f. satisfies A(x) = 1 + x/A(x)*(1 + 1/A(x)^2).

Original entry on oeis.org

1, 2, -8, 60, -552, 5648, -61712, 705104, -8321696, 100658368, -1241281536, 15546987648, -197234640384, 2529169695232, -32728878054144, 426864306146560, -5605439340018176, 74050470138645504, -983432207024885760, 13122261492710033408, -175836387068096147456
Offset: 0

Views

Author

Seiichi Manyama, Jul 22 2023

Keywords

Crossrefs

Programs

  • Maple
    A364395 := proc(n)
        if n = 0 then
            1;
        else
        (-1)^(n-1)*add( binomial(n,k) * binomial(2*n+2*k-2,n-1),k=0..n)/n ;
        end if;
    end proc:
    seq(A364395(n),n=0..80); # R. J. Mathar, Jul 25 2023
    a := n -> `if`(n=0, 1, (-1)^(n+1)*binomial(2*(n-1), n-1)*hypergeom([n-1/2, -n, n], [(n+1)/2, n/2], -1) / n):
    seq(simplify(a(n)), n = 0..20);  # Peter Luschny, Mar 03 2024
  • Mathematica
    nmax = 20; A[_] = 1;
    Do[A[x_] = 1 + x/A[x]*(1 + 1/A[x]^2) + O[x]^(nmax+1) // Normal, {nmax+1}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
  • PARI
    a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(2*n+2*k-2, n-1))/n);

Formula

G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A219534.
a(n) = (-1)^(n-1) * (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(2*n+2*k-2,n-1) for n > 0.
D-finite with recurrence 9*n*(130549*n-619680) *(3*n-1)*(3*n-2)*a(n) +6*(-15361165*n^4 +161422948*n^3 -662268162*n^2 +955427047*n -435307620)*a(n-1) +4*(-908652649*n^4 +9061174176*n^3 -32838390812*n^2 +51018866685*n -28467674946)*a(n-2) -24*(n-3)*(50425637*n^3 -426659887*n^2 +1128823867*n -890225572)*a(n-3) -16*(n-3)*(n-4) *(4607885*n -6704077)*(2*n-9)*a(n-4)=0. - R. J. Mathar, Jul 25 2023
a(n) ~ c*(-1)^(n+1)*4^n*3F2([n-1/2, -n, n], [(n+1)/2, n/2], -1)*n^(-3/2), with c = 1/(4*sqrt(Pi)). - Stefano Spezia, Oct 21 2023
a(n) = (-1)^(n+1)*binomial(2*(n-1), n-1)*hypergeom([n-1/2, -n, n], [(n+1)/2, n/2], -1) / n. - Peter Luschny, Mar 03 2024