A364393
G.f. satisfies A(x) = 1 + x*(1 + 1/A(x)^2).
Original entry on oeis.org
1, 2, -4, 20, -120, 800, -5696, 42416, -326304, 2572992, -20685696, 168920704, -1397257472, 11682707712, -98578346496, 838369268480, -7178912946688, 61842549386240, -535575159363584, 4660216874719232, -40722264390799360, 357204260381327360
Offset: 0
-
A364393 := proc(n)
if n = 0 then
1;
else
(-1)^(n-1)*add( binomial(n,k) * binomial(n+2*k-2,n-1),k=0..n)/n ;
end if;
end proc:
seq(A364393(n),n=0..70); # R. J. Mathar, Jul 25 2023
-
m = 22;
A[_] = 1;
Do[A[x_] = 1 + x*(1 + 1/A[x]^2) + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Sep 05 2023 *)
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(n+2*k-2, n-1))/n);
A364399
G.f. satisfies A(x) = 1 + x/A(x)^3*(1 + 1/A(x)^2).
Original entry on oeis.org
1, 2, -16, 212, -3400, 60384, -1142960, 22598832, -461250208, 9644611008, -205537131008, 4447969973888, -97482797466624, 2159242220999936, -48260706692535552, 1087076798266594048, -24652590023639251456, 562396337623786449920
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(4*n+2*k-2, n-1))/n);
A364397
G.f. satisfies A(x) = 1 + x/A(x)^2*(1 + 1/A(x)^2).
Original entry on oeis.org
1, 2, -12, 124, -1560, 21776, -324256, 5046096, -81086112, 1335113408, -22408067200, 381942129792, -6593494698752, 115044039049728, -2025580621035520, 35943759448886528, -642162301086308864, 11541259115333684224, -208521418711421405184
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(3*n+2*k-2, n-1))/n);
A348957
G.f. A(x) satisfies A(x) = (1 + x * A(-x)) / (1 - x * A(x)).
Original entry on oeis.org
1, 2, 2, 10, 18, 98, 210, 1194, 2786, 16258, 39906, 236938, 601458, 3615330, 9399858, 57024426, 150947010, 922283522, 2475603138, 15212318730, 41290579410, 254909413218, 698230131858, 4327273358250, 11943274468770, 74260741616514, 206279837823650, 1286199407132554
Offset: 0
-
nmax = 27; A[] = 0; Do[A[x] = (1 + x A[-x])/(1 - x A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = -(-1)^n a[n - 1] + Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 27}]
CoefficientList[y/.AsymptoticSolve[y-y^2+x(1+y^3)==0,y->1,{x,0,27}][[1]],x] (* Alexander Burstein, Nov 26 2021 *)
A371341
G.f. A(x) satisfies A(x) = 1 + x/A(x) * (1 + A(x)^5).
Original entry on oeis.org
1, 2, 6, 46, 330, 2778, 24094, 219318, 2048274, 19583410, 190497142, 1880184446, 18778814938, 189456108554, 1927852050830, 19763367194630, 203919590002210, 2116079501498722, 22069907395614182, 231222485352688590, 2432325883912444010
Offset: 0
-
A371341 := proc(n)
if n = 0 then
1;
else
add(binomial(n,k)*binomial(2*n-5*k-2,n-1),k=0..n) ;
(-1)^(n-1)*%/n ;
end if;
end proc:
seq(A371341(n),n=0..60) ; # R. J. Mathar, Apr 22 2024
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(2*n-5*k-2, n-1))/n);
A371562
G.f. A(x) satisfies A(x) = 1 + x/A(x)^3 * (1 + A(x)^5).
Original entry on oeis.org
1, 2, -2, 30, -166, 1514, -12474, 114006, -1050830, 10005138, -96772786, 951500686, -9469982966, 95267209850, -966979784554, 9891522355270, -101866781649310, 1055294818173474, -10989809960251490, 114983445265899774, -1208092406024272710
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(4*n-5*k-2, n-1))/n);
A371892
G.f. A(x) satisfies A(x) = 1 + x/A(x) * (1 + A(x)^4).
Original entry on oeis.org
1, 2, 4, 24, 112, 688, 4032, 25856, 165888, 1103616, 7412480, 50699776, 350087168, 2444208128, 17198686208, 121945948160, 870026493952, 6242802761728, 45016506564608, 326071359897600, 2371312632397824, 17307835567636480, 126743329792327680
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(2*n-4*k-2, n-1))/n);
Showing 1-7 of 7 results.