A364393
G.f. satisfies A(x) = 1 + x*(1 + 1/A(x)^2).
Original entry on oeis.org
1, 2, -4, 20, -120, 800, -5696, 42416, -326304, 2572992, -20685696, 168920704, -1397257472, 11682707712, -98578346496, 838369268480, -7178912946688, 61842549386240, -535575159363584, 4660216874719232, -40722264390799360, 357204260381327360
Offset: 0
-
A364393 := proc(n)
if n = 0 then
1;
else
(-1)^(n-1)*add( binomial(n,k) * binomial(n+2*k-2,n-1),k=0..n)/n ;
end if;
end proc:
seq(A364393(n),n=0..70); # R. J. Mathar, Jul 25 2023
-
m = 22;
A[_] = 1;
Do[A[x_] = 1 + x*(1 + 1/A[x]^2) + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Sep 05 2023 *)
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(n+2*k-2, n-1))/n);
A364395
G.f. satisfies A(x) = 1 + x/A(x)*(1 + 1/A(x)^2).
Original entry on oeis.org
1, 2, -8, 60, -552, 5648, -61712, 705104, -8321696, 100658368, -1241281536, 15546987648, -197234640384, 2529169695232, -32728878054144, 426864306146560, -5605439340018176, 74050470138645504, -983432207024885760, 13122261492710033408, -175836387068096147456
Offset: 0
-
A364395 := proc(n)
if n = 0 then
1;
else
(-1)^(n-1)*add( binomial(n,k) * binomial(2*n+2*k-2,n-1),k=0..n)/n ;
end if;
end proc:
seq(A364395(n),n=0..80); # R. J. Mathar, Jul 25 2023
a := n -> `if`(n=0, 1, (-1)^(n+1)*binomial(2*(n-1), n-1)*hypergeom([n-1/2, -n, n], [(n+1)/2, n/2], -1) / n):
seq(simplify(a(n)), n = 0..20); # Peter Luschny, Mar 03 2024
-
nmax = 20; A[_] = 1;
Do[A[x_] = 1 + x/A[x]*(1 + 1/A[x]^2) + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(2*n+2*k-2, n-1))/n);
A364398
G.f. satisfies A(x) = 1 + x/A(x)^3*(1 + 1/A(x)).
Original entry on oeis.org
1, 2, -14, 162, -2270, 35234, -582958, 10076354, -179802046, 3287029698, -61246957902, 1158889656930, -22207636788894, 430106644358242, -8405699952109166, 165557885912786818, -3282954949273886590, 65487784219460233602, -1313225110482709157518
Offset: 0
-
A364398 := proc(n)
if n = 0 then
1;
else
(-1)^(n-1)*add( binomial(n,k) * binomial(4*n+k-2,n-1),k=0..n)/n ;
end if;
end proc:
seq(A364398(n),n=0..70); # R. J. Mathar, Jul 25 2023
-
nmax = 18; A[] = 1; Do[A[x] = 1+x/A[x]^3*(1+1/A[x]) + O[x]^(nmax+1) // Normal, {nmax}]; CoefficientList[A[x], x] (* Jean-François Alcover, Oct 21 2023 *)
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(4*n+k-2, n-1))/n);
A364397
G.f. satisfies A(x) = 1 + x/A(x)^2*(1 + 1/A(x)^2).
Original entry on oeis.org
1, 2, -12, 124, -1560, 21776, -324256, 5046096, -81086112, 1335113408, -22408067200, 381942129792, -6593494698752, 115044039049728, -2025580621035520, 35943759448886528, -642162301086308864, 11541259115333684224, -208521418711421405184
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(3*n+2*k-2, n-1))/n);
A364400
G.f. satisfies A(x) = 1 + x/A(x)^3*(1 + 1/A(x)^3).
Original entry on oeis.org
1, 2, -18, 270, -4902, 98538, -2110794, 47227846, -1090742094, 25806364434, -622267199554, 15236456140542, -377814588773622, 9468373002766074, -239434464005544570, 6101951612867546166, -156561081975745809566, 4040863076496835880226
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(4*n+3*k-2, n-1))/n);
A371562
G.f. A(x) satisfies A(x) = 1 + x/A(x)^3 * (1 + A(x)^5).
Original entry on oeis.org
1, 2, -2, 30, -166, 1514, -12474, 114006, -1050830, 10005138, -96772786, 951500686, -9469982966, 95267209850, -966979784554, 9891522355270, -101866781649310, 1055294818173474, -10989809960251490, 114983445265899774, -1208092406024272710
Offset: 0
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(4*n-5*k-2, n-1))/n);
Showing 1-6 of 6 results.